Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(S=1+2+3+4+....+99+100\)
\(S=\left(100+1\right).100:2\)
\(S=101.50=5050\)
Chúc bạn học tốt!!!
cảm ơn bn đã giúp đỡ mk mặc dù là chỉ là 1 phần bài nhỏ nhưng dù sao cũng cảm ơn nhìu chúc bn học tốt
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Áp dụng 2 bđt x^2+y^2+z^2 >= xy+yz+zx và x^2+y^2+z^2 >= (x+y+z)^2/3 thì :
a^4+b^4+c^4 >= a^2b^2+b^2c^2+c^2a^2 >= (ab+bc+ca)^2/3 = 4^2/3 = 16/3
Dấu "=" xảy ra <=> a=b=c=\(+-\frac{2}{\sqrt{3}}\)
=> ĐPCM
Tk mk nha
. Mấy cái này dễ mà bạn
. 1) Ta có \(\left|2x+1\right|-3\left(x+5\right)=8\) (1)
. Nếu \(x\ge-\frac{1}{2}\) , pt (1) <=> \(2x+1-3x-15=8\) (Giải pt, ra kết quả của x, bạn đối chiếu với đk \(x\ge-\frac{1}{2}\) )
. Nếu \(x<-\frac{1}{2}\) , pt (1) <=> \(-2x-1-3x-15=8\) , bạn làm như trên
. Bài 2 tương tự bài 1
. 3) Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)
. \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\). Bạn nhóm hạng tử, sử dụng HĐT
. Được: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(BĐT đúng)
. => đpcm