Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
Lời giải:
Đặt các PT lần lượt là PT(1); PT(2) và PT(3)
Từ PT(2) \(\Rightarrow x^2,y^2,z^2\leq 1\Rightarrow x,y,z\leq 1\)
Lấy PT(3) trừ PT(2) thu được:
\(x^2(x-1)+y^2(y-1)+z^2(z-1)=0\)
Vì $x^2\geq 0, \forall x$; $x-1\leq 0$ với mọi $x\leq 1$ nên $x^2(x-1)\leq 0$
Tương tự: $y^2(y-1)\leq 0; z^2(z-1)\leq 0$
Khi đó, để tổng $x^2(x-1)+y^2(y-1)+z^2(z-1)=0$ thì $x^2(x-1)=y^2(y-1)=z^2(z-1)=0$
$\Rightarrow x,y,z\in\left\{0;1\right\}
Kết hợp với PT(1) suy ra $(x,y,z)=(1,0,0)$ và hoán vị
Do đó:
$A=x+y^2+z^3=1$
Lời giải:
Đặt các PT lần lượt là PT(1); PT(2) và PT(3)
Từ PT(2) \(\Rightarrow x^2,y^2,z^2\leq 1\Rightarrow x,y,z\leq 1\)
Lấy PT(3) trừ PT(2) thu được:
\(x^2(x-1)+y^2(y-1)+z^2(z-1)=0\)
Vì $x^2\geq 0, \forall x$; $x-1\leq 0$ với mọi $x\leq 1$ nên $x^2(x-1)\leq 0$
Tương tự: $y^2(y-1)\leq 0; z^2(z-1)\leq 0$
Khi đó, để tổng $x^2(x-1)+y^2(y-1)+z^2(z-1)=0$ thì $x^2(x-1)=y^2(y-1)=z^2(z-1)=0$
$\Rightarrow x,y,z\in\left\{0;1\right\}$
Kết hợp với PT(1) suy ra $(x,y,z)=(1,0,0)$ và hoán vị
Do đó:
$A=x+y^2+z^3=1$
\(9x^2y^2+y^2-6xy-2y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)
\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}3xy-1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{1}{3}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=1\end{matrix}\right.\)