Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.
\(n^4-2n^3-n^2+2n=n\left(n^3-2n^2-n+2\right)=n\left[n^2\left(n-2\right)-\left(n-2\right)\right]\)
\(=n\left(n-2\right)\left(n^2-1\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
là tích của \(4\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)thừa số chia hết cho \(4\), \(1\)thừa số chia hết cho \(3\), \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\)
do đó \(A\)chia hết cho \(2.3.4=24\).
Ta có đpcm.
Bài 1:
\(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{1}{2}}+2\end{cases}}\)
cau 2 , n(2n-3)-2n(n+1)=2n^2-3n-2n^2-2n=-5n
-5chia het cho 5 nen nhan voi moi so nguyen deu chia het cho 5 suy ra n(2n-3)-2n(n+1)chia het cho 5
1,a) (x-1)(x^2+x+1)=x^3-1
VT=x3+x2+x-x2-x-1
=(x3-1)+(x2-x2)+(x-x)
=x3-1+0+0
=x3-1=VP (dpcm)
tương tự a
B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)
\(\Rightarrow xy+yz+zx=0\)
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(=x^2+y^2+z^2+2.0\)
\(=x^2+y^2+z^2\left(đpcm\right)\)
B2) \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)
a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B
Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.
b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)
2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi a - 2b chia hết cho 5.
c) Tương tự: P = 3x2 - 10y = 13x2 - 10x2 - 10y = 13x2 - 10(x2 + y)
10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.
\(x\left(x-1\right)-3x+3=0\)
<=> \(x\left(x-1\right)-3\left(x-1\right)=0\)
<=> \(\left(x-3\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\x=1\end{cases}}\)
\(3x\left(x-2\right)+10-5x=0\)
<=> \(3x\left(x-2\right)+5\left(2-x\right)=0\)
<=> \(3x\left(x-2\right)-5\left(x-2\right)=0\)
<=> \(\left(3x-5\right)\left(x-2\right)=0\)
<=> \(\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)
học tốt
1) ( x - y)2 - ( x + y)2 = -4xy
\(\Leftrightarrow\)( x - y - x + y ) ( x - y + x + y ) = -4xy
\(\Leftrightarrow\)2x + 4xy = 0
\(\Leftrightarrow\)2x ( 1 + 2y ) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=0\\1+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}0\\-\dfrac{1}{2}\end{matrix}\right.\)
2) ( 7n -2)2 - ( 2n - 7)2
= ( 7n - 2 - 2n - 7 )( 7n - 2 + 2n - 7 )
= ( 5n - 9 )( 9n - 9 )
Ta có: 9n \(⋮\) 9 với mọi n
9 \(⋮\) 9 với mọi n
\(\Rightarrow\)9n - 9 \(⋮\) 9 với mọi n
\(\Rightarrow\) đpcm
3) F = x2 + 6x + 1
F = x2 + 2.x.3 + 9 - 8
F = ( x + 3 )2 - 8
Vì ( x + 3)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) ( x + 3 )2 - 8 \(\ge\) -8 với mọi x
\(\Rightarrow\) F \(\ge\) -8 với mọi x
Vậy min F = -8 \(\Leftrightarrow\) ( x + 3 )2 = 0
\(\Leftrightarrow\) x = -3
1. Ta có: \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y+x+y\right)\left(x-y-x-y\right)=2x.\left(-2y\right)=-4xy\)
2. Ta có: \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)=\left(5n+5\right)\left(9n-9\right)=9\left(n-1\right)\left(5n+5\right)\)
\(\Rightarrow\left(7n-2\right)^2-\left(2n-7\right)^2\) chia hết cho 9 với mọi giá trị nguyên của n.
3. Ta có: \(F=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)
Vì \(-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+10\le10\)
=> MaxF=10 <=> \(-\left(x-3\right)^2+10=10\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy MaxF=10 khi x=3.
4. Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2abxy-b^2y^2=0\Leftrightarrow a^2y^2+b^2x^2-2abxy=0\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)
=> đpcm.