Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (x-1)(\(x^2\)+x+1)= x(\(x^2\)+x+1) -1.(\(x^2\)+x+1)=x.\(x^2\)+x.x+x.1 -\(x^2\)-x-1=\(x^3\)+\(x^2\)+x-\(x^2\)-x-1=\(x^3\)-1
vậy (x-1)(\(x^2\)+x+1)=\(x^3\)-1
b) n(2n-3)-2n(n+1)
=n.2n -n.3 -2n.n-2n.1
=2\(n^2\)-3n-2\(n^2\)-2n
=-5n \(⋮\)5 với mọi số nguyên n
Vậy n(2n-3)-2n(n-1) chia hết cho 5 với mọi số nguyên n
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
(n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)
2. Ta có: P = 2x2 + y2 - 4x - 4y + 10
P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4
P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)4 \(\forall\)x;y
=> P luôn dương với mọi biến x;y
3 Ta có:
(2n + 1)(n2 - 3n - 1) - 2n3 + 1
= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1
= -5n2 - 5n = -5n(n + 1) \(⋮\)5 \(\forall\)n \(\in\)Z
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
Bài 3:
a: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
=-5n chia hết cho 5
b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
\(=n^2+3n-4-\left(n^2-3n-4\right)\)
\(=6n⋮6\)
Câu 2:
a: \(n^2-2n+5⋮n-1\)
\(\Leftrightarrow n^2-n-n+1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
b: \(4x^2-6x-16⋮x-3\)
\(\Leftrightarrow4x^2-12x+6x-18+2⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{4;2;5;1\right\}\)
Câu 3:
a: \(\left(3x-8\right)\left(7x+10\right)-\left(2x-15\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left(3x-8\right)\left(7x+10-2x+15\right)=0\)
\(\Leftrightarrow\left(3x-8\right)\left(5x+25\right)=0\)
=>x=8/3 hoặc x=-5
b: \(\dfrac{\left(x^4-2x^2-8\right)}{x-2}=0\)(ĐKXĐ: x<>2)
\(\Leftrightarrow x^4-4x^2+2x^2-8=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)=0\)
=>x+2=0
hay x=-2
cau 2 , n(2n-3)-2n(n+1)=2n^2-3n-2n^2-2n=-5n
-5chia het cho 5 nen nhan voi moi so nguyen deu chia het cho 5 suy ra n(2n-3)-2n(n+1)chia het cho 5
1,a) (x-1)(x^2+x+1)=x^3-1
VT=x3+x2+x-x2-x-1
=(x3-1)+(x2-x2)+(x-x)
=x3-1+0+0
=x3-1=VP (dpcm)
tương tự a