Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1
=\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)
\(\Rightarrow\)A dương với mọi x,y
bạn c/m cho nó lớn hơn hoặc nhỏ hơn 0 đi mk ngại làm vì hơi nhìu ^.^ sory
bài này chỉ có hsg như tui, alibaba nguyễn, hoàng lê bảo ngọc ..... làm dc
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(=>a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)=\left(ax\right)^2+2axby+\left(by\right)^2\)
\(=>a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2axby-b^2y^2=0\)
\(=>a^2y^2+b^2x^2-2axby=0=>\left(ay-bx\right)^2=0\)
=>ax-by=0=>ax=by
Vậy .....................
2) b)
Xét hiệu :
\(100^2+103^2+105^2+94^2-\left(101^2+98^2+96^2+107^2\right)\)
\(=100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)
\(=\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)
\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+1\right)-\left(107-105\right)\left(107+105\right)\)\(-\left(96-94\right)\left(96+94\right)\)
\(=2.198+2.204-2.212-2.190=2\left(198+204-212-190\right)=2.0=0\)
Vậy 1002+1032+1052+942=1012+982+962+1072
a) x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
b) 4x2 - 2x + 1 = 4( x2 - 1/2x + 1/16 ) + 3/4 = 4( x - 1/4 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
c) x4 - 3x2 + 9 (*)
Đặt t = x2
(*) <=> t2 - 3t + 9 = ( t2 - 3t + 9/4 ) + 27/4 = ( t - 3/2 )2 + 27/4 = ( x2 - 3/2 )2 + 27/4 ≥ 27/4 > 0 ∀ x ( đpcm )
d) x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
e) x2 + y2 - 2x - 2y + 2xy + 2 = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + 1
= [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + 1
= [ ( x + y )2 - 2( x + y ) + 12 ] + 1
= ( x + y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
a) \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
b) \(4x^2-2x+1=4\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{3}{4}=4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
c) \(x^4-3x^2+9=\left(x^4-3x^2+\frac{9}{4}\right)+\frac{27}{4}=\left(x^2-\frac{3}{2}\right)^2+\frac{27}{4}>0\left(\forall x\right)\)
d) \(x^2+y^2-2x-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\left(\forall x,y\right)\)
e) \(x^2+y^2-2x-2y+2xy+2\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1+1\)
\(=\left(x+y-1\right)^2+1>0\left(\forall x,y\right)\)
Bài a:
1) \(x^2+4y^2-4x-4y+2016\)
\(=\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)+2011\)
\(=\left(x-2\right)^2+\left(2y-1\right)^2+2011\)
Vì \(\left(x-2\right)^2\ge0\)
\(\left(2y-1\right)^2\ge0\)
\(2011>0\)
\(\Rightarrow\left(x-2\right)^2+\left(2y-1\right)^2+2011>0\)
Vậy biểu thức trên luôn dương với mọi giá trị của biến
2) \(4x^2+4xy+17y^2-8y+1\)
\(=\left(4x^2+4xy+y^2\right)+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\)
Vì \(\left(2x+y\right)^2\ge0\)
\(\left(4y-1\right)^2\ge0\)
\(\Rightarrow\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Vậy biểu thức trên luôn dương với mọi giá trị của biến
3) \(2x^2-5x+13\)
\(=2\left(x^2-\dfrac{5}{2}x+\dfrac{13}{2}\right)\)
\(=2\left(x^2-2.x.\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{25}{16}+\dfrac{13}{2}\right)\)
\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{79}{8}\)
Vì \(2\left(x-\dfrac{5}{4}\right)^2\ge0\)
\(\dfrac{79}{8}>0\)
\(\Rightarrow2\left(x-\dfrac{5}{4}\right)^2+\dfrac{79}{8}>0\)
Vậy biểu thức trên luôn dương với mọi giá trị của biến x
Bài b:
1) \(3x^2+y^2+10x-2xy+26=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+26\right)=0\)
\(\Rightarrow\left(x-y\right)^2+2\left(x^2+5x+13\right)=0\)
\(\Rightarrow\left(x-y\right)^2+2\left(x^2+2.x.\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{25}{4}+13\right)=0\)
\(\Rightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{27}{2}=0\)
Vì \(\left(x-y\right)^2\ge0\)
\(2\left(x+\dfrac{5}{2}\right)^2\ge0\)
\(\dfrac{27}{2}>0\)
\(\Rightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{27}{2}>0\)
Vậy không có các số x,y thỏa mãn đẳng thức trên
2) \(3x^2+6y^2-12x-20y+40=0\)
\(\Rightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y\right)+40=0\)
\(\Rightarrow3\left(x^2-4x+4\right)+6\left(y^2-\dfrac{3}{10}y\right)+28=0\)
\(\Rightarrow3\left(x-2\right)^2+6\left(y^2-2.y.\dfrac{3}{20}+\dfrac{9}{400}-\dfrac{9}{400}\right)+28=0\)
\(\Rightarrow3\left(x-2\right)^2+6\left(y-\dfrac{3}{20}\right)^2-\dfrac{27}{200}+28=0\)
\(\Rightarrow3\left(x-2\right)^2+6\left(y-\dfrac{3}{20}\right)^2+\dfrac{5573}{200}=0\)
Vì \(3\left(x-2\right)^2\ge0\)
\(6\left(y-\dfrac{3}{20}\right)^2\ge0\)
\(\dfrac{5573}{200}>0\)
\(\Rightarrow3\left(x-2\right)^2+6\left(y-\dfrac{3}{20}\right)^2+\dfrac{5573}{200}>0\)
Vậy biểu thức trên không có giá trị x,y thỏa mãn
Cảm ơn b nhiều đúng lúc mk cần gấp