Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) x3 + y3 = ( x + y )3 - 3xy( x + y ) = 125 - 90 = 35
2) E = 2( a + b )( a2 - ab + b2 ) - 3a2 - 3b2 = 2a2 - 2ab + 2b2 - 3a2 - 3b2 = -( a + b )2 = -1
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
a) Ta có x + y = 25
=> (x + y)2 = 625
=> x2 + y2 + 2xy = 625
=> x2 + y2 + 10 = 625
=> x2 +y2 = 615
b) Ta có x + y = 3
=> (x + y)3 = 27
=> x3 + 3x2y + 3xy2 + y3 = 27
=> x3 + y3 + 3xy(x + y) = 27
=> x3 + y3 + 9xy = 27
Lại có x + y = 3
=> (x + y)2 = 9
=> x2 + y2 + 2xy = 9
=> 2xy = 4
=> xy = 2
Khi đó x3 + y3 + 9xy + 27
=> x3 + y3 + 18 = 27
=> x3 + y3 = 9
c) Ta có x - y = 5
=> (x - y)2 = 25
=> x2 + y2 - 2xy = 25
=> 2xy = -10
=> xy = -5
Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50
Bài 4.
a) x2 + y2 = x2 + 2xy + y2 - 2xy
= ( x2 + 2xy + y2 ) - 2xy
= ( x + y )2 - 2xy
= 252 - 2.136
= 625 - 272
= 353
b) x + y = 3
⇔ ( x + y )2 = 9
⇔ x2 + 2xy + y2 = 9
⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )
⇔ 2xy = 4
⇔ xy = 2
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 33 - 3.2.3
= 27 - 18
= 9
a) \(x^2+y^2=\left(x+y\right)^2-2xy\Rightarrow8=\left(x+y\right)^2-2.4\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}.}\)
=>\(\left(x+y\right)^3=\orbr{\begin{cases}4^3=64\\\left(-4\right)^3=-64\end{cases}}.\)
Còn mình thì sẽ giải câu b (câu a bạn giải rất chính xác):
\(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow\)\(\left(x-y\right)^2=16-2.8=0\)
\(\Rightarrow\) \(x-y=0\)
\(\Rightarrow\left(x-y\right)^3=0^3=0\)
\(1;\)Từ \(\left(a+b\right)=-7\Rightarrow\left(a+b\right)^3=-343\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-343\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-343\)
\(\Rightarrow a^3+b^3=-343-3.6.\left(-7\right)=-217\)
\(x^2+y^2=\left(x+y\right)^2-2xy=7^2-2.10=29\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=7^3-3.10.7=133\)
\(P=\left(x+y\right)\left(x^2+y^2\right)\left(x^3+y^3\right)\)
\(=7.29.133=26999\)
Ta có: x3 - y3
= (x - y)(x2 - xy + y2)
= 1.(x2 - 2xy + y2 + xy)
= (x2 - 2xy + y2) + xy
= (x - y)2 + 6
= 12 + 6
= 1 + 6 = 7
Vậy x3 - y3 = 7
ta có
\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^2+y^2-2xy+3xy\)
\(=\left(x-y\right)^2+3xy\)
\(=1+18=19\)
\(\text{a) }P=x^3+6x^2y+12xy^2+8y^3\) tại \(x+2y=-5\) Chữa đề
\(\text{Ta có : }P=x^3+6x^2y+12xy^2+8y^3\\ P=x^3+3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2+y^3\\ P=\left(x+2y\right)^3\\ Thay\text{ }2y+x=-5\text{ vào biểu thức}\\ \text{Ta được: }P=\left(-5\right)^3\\ P=-125\\ \text{Vậy }P=-125\text{ }khi\text{ }2y+x=-5\)
\(\text{b) }Q=x^3-y^3\text{tại }x-y=20;xy=24\\ \text{Theo bài ra ta có: }x-y=10\\ \Rightarrow\left(x-y\right)^2=10^2\\ \Rightarrow x^2-2xy+y^2=100\\ \Rightarrow x^2+y^2=100+2xy\\ Thay\text{ }xy=24\text{ vào biểu thức ta được : }\\ x^2+y^2=100+2xy\\ \Rightarrow x^2+y^2=100+48\\ \Rightarrow x^2+y^2=148\\ \text{Ta lại có : }Q=x^3-y^3\\ Q=\left(x-y\right)\left(x^2+xy+y^2\right)\\ Thay\text{ }x-y=10;xy=24;x^2+y^2=148\text{ vào biểu thức }\\ \text{Ta được : }Q=10\left(148+24\right)\\ Q=1720\\ \text{Vậy }Q=1720\text{ }khi\text{ }x-y=20;xy=24\)
\(\)
Câu a) đề sai
Câu b)