K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

Ta có:

\(\frac{a}{b}< 1\\ \Rightarrow a< b\\ \Rightarrow am< bm\left(m\in N^{\cdot}\right)\\ \Rightarrow am+ab< bm+ab\\\Rightarrow a\left(b+m\right)< b\left(a+m\right)\\ \Rightarrow\frac{a}{b} < \frac{a+m}{b+m}\)

Không. Vì không có phân số nào mà cả tử số và mẫu số nhân với hai số khác nhau lại bằng phân số đã cho cả (hay do m khác n)

19 tháng 8 2016

1. Với a, b ∈ Z, b> 0

- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0

- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0

Tổng quát: Số hữu tỉ  \(\frac{a}{b}\) (a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0

2. Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

                                                  

19 tháng 8 2016

ah ! xin lỗi ha, toán lớp 7 đoá !hihi

11 tháng 3 2017

phải là Lục Cẩn Niên chứ !

16 tháng 5 2017

Không.

26 tháng 2 2018

Có, khi a = 0

7 tháng 2 2018

a, Đặt d là ƯCLN( 12n+1 ; 30n+2 )

Ta có :       \(\left(12n+1\right)⋮d\)                            \(\Rightarrow5\left(12n+1\right)⋮d\) 

                   \(\left(30n+2\right)⋮d\)                               \(2\left(30n+2\right)⋮d\)

\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)

\(\Rightarrow1⋮d\)            \(\Rightarrow d=1\)

\(\Rightarrow12n+1;30n+2\) là hai số nguyên tố cùng nhau

Vậy phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản.

14 tháng 3 2017

Cách 1: Nếu bạn đã học các hằng đẳng thức đáng nhớ.

\(\frac{a}{b}+\frac{b}{a}\)\(=\frac{a^2+b^2}{ab}\)

\(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\)

Vì a,b > 0 nên \(\frac{\left(a-b\right)^2}{ab}>0\)

hay \(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(>0\)

=>\(\frac{a^2+b^2}{ab}>2\)

=>\(\frac{a}{b}+\frac{b}{a}>2\)

Cách 2: nếu bạn đã học bất đẳng thức cô-si:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\ge2\sqrt{1}>2\)(theo bất đẳng thức cô-si)