K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

a ) Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

16 tháng 6 2016

p<p+4 nguyen to => p<p+4 dang 3k +1

=>p+8 dang 3k+9

3k chia het cho 3

9 chia het cho 3 

=> 3k +9 là hợp số =>p +8 là hợp số

18 tháng 1 2016

trừ điểm Lê Nhật Minh đi 

olm-logo.png

11 tháng 1 2018

Cũng thế nhưng xét trực tiếp 3 số khác: 
* Xét: p # 3 
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số

11 tháng 1 2018

* Xét: p # 3 
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số

bif03jpa1gms_500

xét p=3k+1=>p+2=3k+3=3(k+1) là hợp số  (vô lí)

=>p=3k+2

=>p+1=3k+3=3(k+1) chia hết cho 3(1)

p là số lẻ=>p+1 là số chẵn=>p+1 chia hết cho 3(2)

từ (1);(2)=>p+1 chia hết cho 6

=>đpcm

8 tháng 1 2016

< = > p + 1 chẵn

p chia  3 dư 2 thõa mãn p và p +2 là 2 số nguyên tố

=> p + 1 chia hết cho 3

Mà UCLN(2 ; 3) = 1 

=> p + 1 chia hết cho 2.3=  6

12 tháng 12 2015

Câu hỏi tương tự, tick nha Tran Thi Xuan

12 tháng 12 2015

vào câu hỏi tương tự đó bạn

12 tháng 3 2018

Giup minh voi cac ban oi

12 tháng 3 2018

mai mk nop cho co giao roi

9 tháng 1 2018

       Do p là số nguyên tố > 3 nên 4p không thể chia hết cho 3 được , mà 4p + 2 = 2.(2p +4 ) cũng không chia hết cho 3.

       Mà 4p , 4p + 1 , 4p + 2 là 3 số tự nhiên liên tiếp nên ít nhất phải có 1 số chia hết cho 3 . Vì 4p + 1 chia hết cho 3 hay 4p + 1 lớn hơn 13 do đó 4p + 1 là hợp số 

9 tháng 1 2018

Vì p nguyên tố \(>3\)\(\Rightarrow p=3k+1\)hoặc \(p=3k+2\)

Với \(p=3k+1\Rightarrow2p+1=2\left(3k+1\right)+1\)

           \(=6k+2+1=6k+3⋮3\)

\(\Rightarrow\) Là hợp số \(\Rightarrow\)Không thỏa mãn

\(\Rightarrow p=3k+2\Rightarrow4p+1=4\left(3k+2\right)+1\)

          \(=12k+8+1=12k+9⋮3\)

\(\Rightarrow\) \(4p+1\)là hợp số