Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2
=>m<=1 hoặc m>=-1
b: Để A là tập con của B thì m-1>-2 và 4<=2m+2
=>m>-1 và 2m+2>=4
=>m>-1 và m>=1
=>m>=1
c: Để B là tập con của B thì m-1<-2 và 2m+2<=4
=>m<-1 và m<=1
=>m<-1
Để A và B có nghĩa \(\Rightarrow\left\{{}\begin{matrix}m-4\le1\\m>-3\end{matrix}\right.\) \(\Rightarrow-3< m\le5\)
\(A\cup B=B\Leftrightarrow A\subset B\)
\(\Rightarrow\left\{{}\begin{matrix}m-4>-3\\m\ge1\end{matrix}\right.\) \(\Rightarrow m>1\)
\(\Rightarrow1< m\le5\Rightarrow m=\left\{2;3;4;5\right\}\)
Tổng bằng ....
Để A có nghĩa \(\Rightarrow\frac{m+1}{2}\ge m-1\Rightarrow m\le3\)
a/ \(A\subset B\Leftrightarrow\left[{}\begin{matrix}\frac{m+1}{2}< -2\\m-1\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -5\\m\ge3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -5\\m=3\end{matrix}\right.\)
b/ \(A\cap B=\varnothing\Leftrightarrow\left\{{}\begin{matrix}m-1\ge-2\\\frac{m+1}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow-1\le m< 3\)
1.
\(A\subset B\Leftrightarrow\left\{{}\begin{matrix}2m-1\le-1\\2m+3\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\m\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le m\le0\)
\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}-1\le2m-1\\2m+3\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le-1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn yêu cầu
\(A\cap B\) nhưng bằng cái gì? Chỗ này đề thiếu
2.
a.
\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}-4\le m-7\\m\le3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge3\\m\le3\end{matrix}\right.\) \(\Leftrightarrow m=3\)
b.
\(A\cup B=A\Leftrightarrow B\subset A\Leftrightarrow\left\{{}\begin{matrix}m\ge-3\\m\le1\\-4\le-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le1\)
c.
\(A\backslash B=\varnothing\Leftrightarrow A\subset B\Leftrightarrow\left\{{}\begin{matrix}m-1< 5\\m-1\ge3\end{matrix}\right.\) \(\Rightarrow4\le m< 6\)
Lời giải:
a)
Để \(A\cap B\neq \varnothing \) thì :
\(\left\{\begin{matrix} (3m-2)-(m+1)>0\\ 2m+3-2>0\\ m+1\leq 2m+3\\ 3m-2\geq 2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> \frac{3}{2}\\ m>\frac{-1}{2}\\ -2\leq m\\ m\geq \frac{4}{3}\end{matrix}\right.\Rightarrow m>\frac{3}{2}\)
b)
Để \(A\subset B\) thì \(\left\{\begin{matrix} (3m-2)-(m+1)>0\\ 2m+3-2>0\\ m+1\geq 2\\ 3m-2\leq 2m+3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>\frac{3}{2}\\ m>\frac{-1}{2}\\ m\geq 1\\ m\leq 5\end{matrix}\right.\)
\(\Rightarrow 5\geq m>\frac{3}{2}\)
a: Để B là tập con của A thì m-7>-4 và m<3
=>m>3 và m<3
=>\(m\in\varnothing\)
b: Để A hợp B=A thì B là tập con của A
=>-3>-4 và m<=1
=>m<=1