\([m+1,3m-2]\), B=\([2,2m+3]\)

a)tìm m để A

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

Lời giải:

a)


Để \(A\cap B\neq \varnothing \) thì :

\(\left\{\begin{matrix} (3m-2)-(m+1)>0\\ 2m+3-2>0\\ m+1\leq 2m+3\\ 3m-2\geq 2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> \frac{3}{2}\\ m>\frac{-1}{2}\\ -2\leq m\\ m\geq \frac{4}{3}\end{matrix}\right.\Rightarrow m>\frac{3}{2}\)

b)

Để \(A\subset B\) thì \(\left\{\begin{matrix} (3m-2)-(m+1)>0\\ 2m+3-2>0\\ m+1\geq 2\\ 3m-2\leq 2m+3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>\frac{3}{2}\\ m>\frac{-1}{2}\\ m\geq 1\\ m\leq 5\end{matrix}\right.\)

\(\Rightarrow 5\geq m>\frac{3}{2}\)

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để: a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\)) b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\)) c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\)) d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\)) Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R Bài 3: a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\) b, Viết tập A gồm các phần...
Đọc tiếp

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:

a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))

b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))

c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))

d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))

Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R

Bài 3:

a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)

b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)

với x+1\(\ge0\)dưới dạng tập số.

Bài 4:

Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)

Bài 5:

Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:

a, \(A\cap B\ne\varnothing\)

b, \(A\subset B\)

c, \(B\subset A\)

d, \(A\cap B=\varnothing\)

Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:

a, A\(\cap B\ne\varnothing\)

b, A\(\subset B\)

c,\(B\subset A\)

1

Bài 6:

a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2

=>m<=1 hoặc m>=-1

b: Để A là tập con của B thì m-1>-2 và 4<=2m+2

=>m>-1 và 2m+2>=4

=>m>-1 và m>=1

=>m>=1

c: Để B là tập con của B thì m-1<-2 và 2m+2<=4

=>m<-1 và m<=1

=>m<-1

11 tháng 10 2020
https://i.imgur.com/qnt23NY.jpg
12 tháng 10 2020

Thank you!

AH
Akai Haruma
Giáo viên
21 tháng 9 2018

Lời giải:

a)

Để \(A\cap B=\oslash\) thì \(\left[\begin{matrix} a+2\leq 1\\ a> 5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} a\leq -1\\ a> 5\end{matrix}\right.\)

b)

\(A\subset B\) khi \(\left\{\begin{matrix} a>1\\ a+2\leq 5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a> 1\\ a\leq 3\end{matrix}\right.\)

\(\Rightarrow a\in (1;3]\)

c)

\(B\subset A\) khi \(\left\{\begin{matrix} 1\geq a\\ 5< a+2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a\leq 1\\ a>3\end{matrix}\right.\) (hoàn toàn vô lý)

Tức là không có giá trị $a$ thỏa mãn

Hoặc có thể dễ thấy độ dài biểu diễn trên trên trục số của $B$ luôn lớn hơn $A$ nên $B$ không thể là tập con của $A$

6 tháng 10 2019
https://i.imgur.com/GnLDUYX.jpg

a: Để A giao B=rỗng thì 2m+3<=-1 hoặc 2m-1>=1

=>m<=-2 hoặc m>=1

b: Để A là tập con của B thì 2m-1>=-1 và 2m+3<=1

=>m>=0 và m<=-1

hay \(m\in\varnothing\)