Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n(n+1)}\) ; \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n(n+1)}=\frac{1}{n(n+1)}\)
\(b)A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
\(=(\frac{1}{5}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{7})+(\frac{1}{7}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{9})+(\frac{1}{9}-\frac{1}{10})+(\frac{1}{10}-\frac{1}{11})+(\frac{1}{11}-\frac{1}{12})\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
a) Ta có hiệu của chúng là:
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\left(1\right)\)
Mặt khác, ta lại có tích của chúng là:
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\left(2\right)\)
Từ (1) và (2) suy ra: \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n}.\frac{1}{n+1}\)
Vậy tích của hai phân số này bằng hiệu của chúng (hiệu của phân số lớn trừ phân số nhỏ)
b) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow M>N\)
b.ta thấy:
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
=> A>B
b)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
\(B=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(B=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)
\(B=\frac{1}{5}-\frac{1}{12}\)
\(B=\frac{7}{60}\)
a) Ta có:
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\) ; \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{1\left(n+1\right)}\)
Vậy \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)
b) \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{100-99}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
\(B=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(B=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(B=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}-\frac{1}{11}-\frac{1}{12}\)
\(B=\frac{1}{5}-\frac{1}{12}\)
\(B=\frac{7}{60}\)
Ta co:1/n.1/n+1=1/n(n+1)=1/n^2+n;1/n-1/n+1=n+1/n(n+1)-n/n(n+1)=n+1-n/n^2+n=1/n^2+n
=>1/n.1/n+1=1/n-1/n+1
a)\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n-1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
\(\Rightarrow\frac{1}{n\left(n+1\right)}=\frac{1}{n}.\frac{1}{n+1}\)
b) \(C=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}+\frac{1}{6}.\frac{1}{7}+\frac{1}{7}.\frac{1}{8}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}+0+0+0+0+0-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{4}{8}-\frac{1}{8}=\frac{4-1}{8}=\frac{3}{8}\)
Các phân số trên có dạng \(\frac{a}{n+2+a}\) với a = 6; 7; 8; ...; 65
\(\frac{a}{n+2+a}\)tối giản \(\Leftrightarrow\)ƯCLN(a; n+2+a) = 1 \(\Leftrightarrow\) ƯCLN(n+2; a) = 1
\(\Leftrightarrow\)n + 2 nguyên tố cùng nhau với mỗi số 6; 7; 8; ...; 65 và n + 2 nhỏ nhất
Do đó n + 2 = 67 (67 là số nguyên tố)
nên n = 65