K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

Ta có : a^3 + b^3 = (a + b)(a^2 - ab + b^2) = (a + b)(a^2 + 2ab + b^2 - 3ab) 
= (a + b)[(a + b)^2 - 3ab] = (a + b)^3 - 3ab(a + b) 

21 tháng 5 2016

đề yêu cầu j

15 tháng 2 2016

M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b) 

= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

_______thay a + b = 1 __________________: 
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b² 

M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1

15 tháng 2 2016

M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b) 

= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

_______thay a + b = 1 __________________: 
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b² 

M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1

27 tháng 12 2016

a/ \(\Leftrightarrow x\left(8x^3+12x^2+6x+1\right)=0\Leftrightarrow x\left[\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\right]=0\)

\(\Leftrightarrow x\left(2x+1\right)^3=0\Rightarrow\orbr{\begin{cases}x=0\\\left(2x+1\right)^3=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)

b/ \(\Leftrightarrow4x^2-\left(4x^2-9\right)=9x\Leftrightarrow9x=9\Leftrightarrow x=1\)

c/ Từ \(\frac{1}{a}-\frac{1}{b}=1\Rightarrow a-b=-ab\) thay vào biểu thức

\(\Rightarrow\frac{-ab-2ab}{-2ab+3ab}=\frac{-3ab}{ab}=-3\)

13 tháng 12 2017

a3-3ab2=5 và b3-3a2b=10

Bình phương cả 2 vế ta được:

+)                (a3-3ab2)2=52

a6-6a4b2+9a2b4=25

+)               (b3-3a2b)2=10

b6-6a2b4+9a4b2=100

Cộng theo vế ta có:

a6-6a4b2+9a2b4+b6-6a2b4+9a4b2=100+25

a6+3a4b2+3a2b4+b6=125

(a2+b2)3=125

(a2+b2)3=53

=>a2+b2=5
Vậy a2+b2=5

CHÚC BẠN HỌC TỐT ^_^

12 tháng 9 2018

Đặt a+b=x ; b+c=y ; c+a=z, A=(a+b)3.....

Khi đó A= x3+y3+z3-3xyz= (x+y)3- 3xy(x+y) - 3xyz +z3

= (x+y+z)3- 3z(x+y)(x+y+z)- 3xy(x+y+z)

=(x+y+z)(x2+y2+z2+2xy+2yz+2xz-3xz-3zy-3xy)

= (x+y+z)(x2+y2+z2-xy-yz-xz)

tu day em thay vao nhe

9 tháng 8 2016

a)\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

\(=a^3+b^3\)

b)\(\left(a-b\right)^3+3ab\left(a-b\right)\)

\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)

\(=a^3-b^3\)

23 tháng 7 2019

\(A=a^3+b^3+3ab=\left(a+b\right)\left(a^2+b^2-ab\right)+3ab=a^2+b^2-ab+3ab\)

\(A=a^2+b^2+2ab\)

\(A=\left(a+b\right)^2=1\)

23 tháng 7 2019

\(B=2\left(a+b\right)\left(a^2+b^2-ab\right)-3\left(a^2+b^2\right)\)

\(B=2a^2+2b^2-2ab-3a^2-3b^2\)

\(B=-\left(a+b\right)^2=-1\)

26 tháng 11 2015

a/ Có: VP = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2

= a3 + b3 (=VT)

Vậy a+ b= (a + b)- 3ab(a + b)

b/ tương tự

11 tháng 7 2016

1. Cần sửa lại thành \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

Ta có : \(a^2+b^2+c^2-3=2\left(a+b+c\right)\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c=1\)

2. Cần sửa lại thành :  \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

Ta có : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c\)

3. Ta có : \(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=\frac{-\left(a^2+b^2+c^2\right)}{2}=-\frac{1}{2}\)\(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)

Lại có : \(1=\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2+b^2+c^2\right)=1-2.\frac{1}{4}=\frac{1}{2}\)

11 tháng 7 2016

tài năng toán học hoàng lê bảo ngọc,tui công nhận bn 3 lần/ngày