Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b)
= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
_______thay a + b = 1 __________________:
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b²
M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1
M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b)
= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
_______thay a + b = 1 __________________:
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b²
M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1
\(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3=\left(x^3-6x^2y+9xy^2\right)+\left(y^3-6xy^2+9x^2y\right)\)
\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
b/
\(\left(a+b\right)^3+\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3\)
\(=2a^3+6ab^2=2a\left(a^2+3b^2\right)\)
c/
\(\left(a+b\right)^3-\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)
\(=6a^2b+2b^3=2b\left(b^2+3a^2\right)\)
d/
\(a^3+b^3=a^3+3a^2b+3ab^2+b^3-\left(3a^2b+3ab^2\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
e/
\(a^3-b^3=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+ab+b^2\right)+3a^3b+3ab^3+6a^2b^2\)
\(=a^2+ab+b^2+3ab\left(a^2+b^2+2ab\right)\)
\(=a^2+ab+b^2+3ab\left(a+b\right)^2\)
\(=a^2+2ab+b^2+2ab\)
\(= \left(a+b\right)^2+2ab=2ab\)
ta co
M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b)
= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
_______thay a + b = 1 __________________:
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b²
M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
M = (a + b).(a2 - ab + b2) + 3ab[a2 + b2 + 2ab(a + b)]
M = a2 - ab + b2 + 3ab.(a2 + b2 + 2ab)
M = a2 - ab + b2 + 3ab.(a + b)2
M = a2 - ab + b2 + 3ab
M = a2 + b2 + 2ab
M = (a + b)2
M = 1
ta có \(\left(a^3-3ab^2\right)^2=19^2=361=a^6-6a^4b^2+9a^2b^4\left(1\right)\)
tương tự \(\left(b^3-3a^2b\right)^2=9604=b^6-6b^4a^2+9a^4b^2\left(2\right)\)
lấy (1) và(2) trừ cho nhau ta được \(\left(a^2+b^2\right)^3\)=-9243
suy ra a^2+b^2=-20.98638573
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2-2ab\right)+6a^2b^2\)
\(=\left(a^2+2ab+b^2-3ab\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=\left(a+b\right)^2-3ab+3ab\times\left(-2ab\right)+6a^2b^2\)
\(=-3ab-6a^2b^2+6a^2b^2\)
= - 3ab
\(A=a^3+b^3+3ab=\left(a+b\right)\left(a^2+b^2-ab\right)+3ab=a^2+b^2-ab+3ab\)
\(A=a^2+b^2+2ab\)
\(A=\left(a+b\right)^2=1\)
\(B=2\left(a+b\right)\left(a^2+b^2-ab\right)-3\left(a^2+b^2\right)\)
\(B=2a^2+2b^2-2ab-3a^2-3b^2\)
\(B=-\left(a+b\right)^2=-1\)