Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : B = 550 - 549 + 548 - 547 + .... + 52 - 5 + 1
=> 5B = 551 - 550 + 549 - 548 + ... + 53 - 52 + 5
Khi đó 5B + B = (551 - 550 + 549 - 548 + ... + 53 - 52 + 5) + (550 - 549 + 548 - 547 + .... + 52 - 5 + 1)
=> 6B = 551 + 1
=> B = \(\frac{5^{51}+1}{6}\)
Vậy \(B=\frac{5^{51}+1}{6}\)
<=> 5B = 551 - 550 + 549 - ...... - 52 + 5
<=> 5B + B = 551 - 550 + 550 - 549 + 549 - ... + 5 - 5 + 1
<=> 6B = 551 + 1
<=> B = (551 + 1)/6
a)
\(A=\frac{6^3+3.6^3+3^3}{-13}=\frac{3^3.2^3+3^3.2^2+3^3}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=-27\)
b)
A=1+5+52+53+...+550
5A=5+52+53+...551
5A-A=(5+52+53+...+551)-(1+5+52+...+550)
4A=551-1
A=\(\frac{5^{51}-1}{4}\)
c)
A=2100-299+298-...+22-2
2A=2101-2100+299-...+23-22
2A+A=(2101-2100+...+23-22)+(2100-299+...+22-2)
3A=2101-2
A=\(\frac{2^{101}-2}{3}\)
b.
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{50}+5^{51}\right)-\left(1+5+5^2+..+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
\(A=1+5+5^2+..+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{51}\right)-\left(1+5+5^2+...+5^{50}\right)\)
\(4A=\left(5-5\right)+\left(5^2-5^2\right)+...+\left(5^{50}+5^{50}\right)+5^{51}-1\)
\(4A=0+0+...+0+5^{51}-1\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
\(a.A=2+2+2^2+2^3+2^4+...+2^{99}\)
\(A=2+\left(2+2^2+2^3+2^4+...2^{99}\right)\)
\(\Rightarrow A-2=2+2^2+2^3+2^4+...+2^{99}\)
\(2.\left(A-2\right)=2^2+2^3+2^4+2^5+...+2^{100}\)
\(2.\left(A-2\right)-\left(A-2\right)=2^{100}-2=2.2^{99}\)
\(A=2.2^{99}+2\)
Câu b bạn tự giải nhé
\(A=2+2^2+2^3+2^4+......+2^{98}+2^{99}\)
\(2A=2^2+2^3+2^4+2^5+.....+2^{99}+2^{100}\)
\(\Rightarrow2A-A=A=2^{100}-2\)
\(B=1+5+5^2+5^3+........+5^{50}+5^{51}\)
\(5B=5+5^2+5^3+5^4+.....+5^{51}+5^{52}\)
\(5B-B=4B=5^{52}-1\)
\(\Rightarrow B=\frac{5^{52}-1}{4}\)
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
a)76+75+74=74(72+7+1)=74.55
=>76+75+74 chia hết cho 55
b)A= 1+5+52+53+54+....+550
=>5A=5+52+53+54+....+551
=>5A-A=5+52+53+54+....+551-(1+5+52+53+54+....+550)
=>4A=5+52+53+54+....+551-1-5-52-53-54-...-550
=551-1
=>A=(551-1):4
A = 5 + 5² + 5³ + ... + 5⁴⁹ + 5⁵⁰
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5⁵⁰ + 5⁵¹
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5⁵⁰ + 5⁵¹) - (5 + 5² + 5³ + ... + 5⁴⁹ + 5⁵⁰)
= 5⁵¹ - 5
⇒ A = (5⁵¹ - 5) : 4