Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)47-\left[\left(45.2^4-5^2.12\right):14\right]\)
\(=47-\left[\left(45.16-25.12\right):14\right]\)
\(=47-\left[\left(720-300\right):14\right]\)
\(=47-\left[420:14\right]\)
\(=47-30\)
\(=17\)
\(b)50-\left[\left(20-2^3\right):2+34\right]\)
\(=50-\left[\left(20-8\right)\right]:2+34\)
\(=50-\left[12:2+34\right]\)
\(=50-\left[6+34\right]\)
\(=50-40\)
\(=10\)
\(c)10^2-\left[60:\left(5^6:5^4-3,5\right)\right]\)
\(=10^2-\left[60:\left(5^2-3,5\right)\right]\)
\(=10^2-\left[60:\left(25-3,5\right)\right]\)
\(=10^2-\left[60:21,5\right]\)
\(=100-\dfrac{120}{43}\)
\(=\dfrac{4180}{43}\)
\(d)50-\left[\left(50-2^3.5\right):2+3\right]\)
\(=50-\left[\left(50-8.5\right):2+3\right]\)
\(=50-\left[\left(50-40\right):2+3\right]\)
\(=50-\left[10:2+3\right]\)
\(=50-5+3\)
\(=50-8\)
\(=42\)
\(e)10-\left[\left(8^2-48\right).5+\left(2^3.10+8\right)\right]:28\)
\(=10-\left[\left(64-48\right).5+\left(8.10+8\right)\right]:28\)
\(=10-\left[16.5+\left(80+8\right)\right]:28\)
\(=10-\left[80+88\right]:28\)
\(=10-168:28\)
\(=10-6\)
\(=4\)
\(f)8697-\left[3^7:3^5+2.\left(13-3\right)\right]\)
\(=8697-\left[3^2+2.\left(13-3\right)\right]\)
\(=8697-\left[9+2.10\right]\)
\(=8697-9+20\)
\(=8697-29\)
\(=8668\)
\(g)2011+5\left[300-\left(17-7\right)^2\right]\)
\(=2011+5.\left[300-10^2\right]\)
\(=2011+5.\left[300-100\right]\)
\(=2011+5.200\)
\(=2011+1000\)
\(=3011\)
\(h)695-\left[200+\left(11-1\right)^2\right]\)
\(=695-\left[200+10^2\right]\)
\(=695-200+100\)
\(=695-300\)
\(=395\)
\(i)129-5\left[29-\left(6-1\right)^2\right]\)
\(=129-5\left[29-5^2\right]\)
\(=129-5\left[29-25\right]\)
\(=129-5.4\)
\(=129-20\)
\(=109\)
Ta có A = 550 - 548 + 546 - 544 + .... + 52 - 1
=> 52A = 25A = 552 - 550 + 548 - 546 + .... + 53 - 52
=> 25A + A = (552 - 550 + 548 - 546 + .... + 53 - 52) + (550 - 548 + 546 - 544 + .... + 52 - 1)
=> 26A = 552 - 1
=> A = \(\frac{5^{52}-1}{26}\)
b) Sửa đề : Tìm n sao cho 26A + 1 = 511 + n
Khi đó 26A + 1 = 511 + n
<=> 552 - 1 + 1 = 511 + n
<=> 552 = 511 + n
<=> 11 + n = 52
<=> n = 41
c) Ta có A - 24 = 550 - 548 + 546 - 544 + .... + 56 - 54
= 548(52 - 1) + 544(52 - 1) + .... + 54(52 - 1)
= (52 - 1)(548 + 544 + ... + 54)
= 24.(548 + 544 + ... + 54)
= 24.52(546 + 542 + ... + 1)
= 24.25.(546 + 542 + ... + 1)
= 600.(546 + 542 + ... + 1) = 6.100.(546 + 542 + ... + 1) \(⋮100\)
Vì A - 24 \(⋮\)100
=> A chia 100 dư 24
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Ta có:
B = 5^0 + 5^2 + 5^4 + ... + 5^50
25B = 5^2 + 5^4 + 5^6 + ... + 5^52
25B - 5B = (5^2 + 5^4 + 5^6 + ... + 5^52) - (5^0 + 5^2 + 5^4 + ... + 5^50)
20B = 5^52 - 5^0
B = \(\frac{5^{52}-5^0}{20}\)
Đặt A = 5 + 53 + 55 + ... + 547 + 549
52.A = 53 + 55 + 57 + ... + 549 + 551
52.A - A = (53 + 55 + 57 + ... + 549 + 551) - (5 + 53 + 55 + ... + 547 + 549)
25.A - A = 551 - 5
24.A = 551 - 5
A = 551 - 5/24
Ủng hộ mk nha ^_-
a)A=550-548+546-......+52-1
52A=52.(550-548+546-......+52-1)
25A=552-550+548-......+54-52
25A+A=(552-550+548-......+54-52)+(550-548+546-......+52-1)
26A=552-1
b)26A+1=552-1+1=552
=>26A=552=5n
=>n=52
c)552 luôn tận cùng là 5
=>552 chia 100 dư 5
Chúc bn học tốt
Ta có : B = 550 - 549 + 548 - 547 + .... + 52 - 5 + 1
=> 5B = 551 - 550 + 549 - 548 + ... + 53 - 52 + 5
Khi đó 5B + B = (551 - 550 + 549 - 548 + ... + 53 - 52 + 5) + (550 - 549 + 548 - 547 + .... + 52 - 5 + 1)
=> 6B = 551 + 1
=> B = \(\frac{5^{51}+1}{6}\)
Vậy \(B=\frac{5^{51}+1}{6}\)
<=> 5B = 551 - 550 + 549 - ...... - 52 + 5
<=> 5B + B = 551 - 550 + 550 - 549 + 549 - ... + 5 - 5 + 1
<=> 6B = 551 + 1
<=> B = (551 + 1)/6