K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

a)

\(4x^2-9y^2+6x-9y=\left(2x-3y\right)\left(2x+3\right)+3\left(2x-3y\right)\)

\(=\left(2x-3y\right)\left(2x+3y+3\right)\)

b)

\(1-2x+2yz+x^2-y^2-z^2=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\) (đổi dấu)

\(=\left(x-1\right)^2-\left(y-z\right)^2\)

c)

\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+5\left(x+1\right)+3\right)\)

\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)=\left(x-1\right)\left(x+3\right)^2\)

2 tháng 8 2017

(2x-3y)(2x+3y) chớ x + 3 k ik

30 tháng 10 2016

\(B=7x^2-7xy-5x+5y\)

\(=7x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(7x-5\right)\)

\(E=x^2+7x+12\)

\(=x^2+3x+4x+12\)

\(=x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+3\right)\left(x+4\right)\)

\(F=x^2-9x+18\)

\(=x^2-3x-6x+18\)

\(=x\left(x-3\right)-6\left(x-3\right)\)

\(=\left(x-3\right)\left(x-6\right)\)

\(H=8x^2-2x-1\)

\(=8x^2-4x+2x-1\)

\(=4x\left(2x-1\right)+\left(2x-1\right)\)

\(=\left(2x-1\right)\left(4x+1\right)\)

 

30 tháng 10 2019

Câu 1 : Tìm x :

1. \(A=x^2+4x-2\)

\(A=x^2+2.x.2+2^2-2^2-2\)

\(A=\left(x^2+4x+2^2\right)-4-2\)

\(A=\left(x+2\right)^2-6\)

\(\left(x+2\right)^2-6\ge-6\)

MIn A= -6 khi \(\left(x+2\right)^2=0\)

=> \(x+2=0hayx=-2\)

Vậy x=2

những câu tiếp theo làm tg tự như thế nhé

30 tháng 10 2019

Câu 1:

a) Ta có: \(A=x^2+4x-2\)

\(=x^2+4x+4-6\)

\(=\left(x+2\right)^2-6\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2-6\ge-6\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: x=-2

b) Ta có: \(B=2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot1+1+\frac{1}{2}\right)\)

\(=2\left[\left(x^2-2x\cdot1+1\right)+\frac{1}{2}\right]\)

\(=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)

\(=2\left(x-1\right)^2+1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: x=1

c) Ta có: \(C=x^2+y^2-4x+2y+5\)

\(=x^2-4x+4+y^2+2y+1\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)

\(=\left(x-2\right)^2+\left(y+1\right)^2\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\left(y+1\right)^2\ge0\forall y\)

Do đó: \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy: x=2 và y=-1

Câu 2:

a) Ta có: \(A=-x^2+6x+5\)

\(=-\left(x^2-6x-5\right)\)

\(=-\left(x^2-6x+9-14\right)\)

\(=-\left[\left(x^2-6x+9\right)-14\right]\)

\(=-\left[\left(x-3\right)^2-14\right]\)

\(=-\left(x-3\right)^2+14\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2+14\le14\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(A=-x^2+6x+5\) là 14 khi x=3

b) Ta có: \(B=-4x^2-9y^2-4x+6y+3\)

\(=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2-5\right]\)

\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(2x+1\right)^2\le0\forall x\)(1)

Ta có: \(\left(3y-1\right)^2\ge0\forall y\)

\(\Rightarrow-\left(3y-1\right)^2\le0\forall y\)(2)

Từ (1) và (2) suy ra

\(-\left(2x+1\right)^2-\left(3y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left(2x+1\right)^2-\left(3y-1\right)^2+5\le5\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}-\left(2x+1\right)^2=0\\-\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

Vậy: GTLN của đa thức \(B=-4x^2-9y^2-4x+6y+3\) là 5 khi và chỉ khi \(x=\frac{-1}{2}\)\(y=\frac{1}{3}\)

Câu 3:

a) Ta có: \(x^2+y^2-2x+4y+5=0\)

\(\Rightarrow x^2-2x+1+y^2+4y+4=0\)

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy: x=1 và y=-2

b) Ta có: \(5x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow x^2+4x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow\left(4x^2+12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Rightarrow\left(2x+3y\right)^2+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

Vậy: x=3 và y=-2

1 tháng 1 2018

a)\(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}:\dfrac{2\left(x-3\right)}{3\left(x+1\right)}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)

\(=\dfrac{-\left(x-3\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)

\(=\dfrac{-\left(9+3x+x^2\right)3}{10}\)

b)\(4x^2-16:\dfrac{3x+6}{7x-2}\)

\(=4\left(x^2-4\right):\dfrac{3\left(x+2\right)}{7x-2}\)

\(=4\left(x-2\right)\left(x+2\right)\cdot\dfrac{7x-2}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)

c)\(\dfrac{3x^3+3}{x-1}:x^2-x+1\)

\(=\dfrac{3\left(x^3+1\right)}{x-1}:x^2-x+1\)

\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{x-1}\cdot\dfrac{1}{x^2-x+1}\)

\(=\dfrac{3\left(x+1\right)}{x-1}\)

d)\(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)

\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)

\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{-\left(x-1\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)

\(=\dfrac{-2\left(1+x+x^2\right)}{2x+3y}\)

ngoamthanghoa

1 tháng 1 2018

a) \(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)

\(=\dfrac{27-x^3}{5x+5}.\dfrac{3x+3}{2x-6}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}.\dfrac{3\left(x+1\right)}{2\left(x-3\right)}\)

\(=-\dfrac{3\left(x-3\right)\left(x^2+3x+9\right)\left(x+1\right)}{10\left(x+1\right)\left(x-3\right)}\)

\(=-\dfrac{3\left(x^2+3x+9\right)}{10}\)

b) \(4x^2-16:\dfrac{3x+6}{7x-2}\)

\(=4x^2-16.\dfrac{7x-2}{3x+6}\)

\(=\dfrac{4\left(x^2-4\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)

c) \(\dfrac{3x^3+3}{x-1}:x^2-x+1\)

\(=\dfrac{3x^3+3}{x-1}.\dfrac{1}{x^2-x+1}\)

\(=\dfrac{3\left(x^3+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3\left(x+1\right)}{x-1}\)

d) \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)

\(=\dfrac{4x+6y}{x-1}.\dfrac{1-x^3}{4x^2+12xy+9y^2}\)

\(=\dfrac{2\left(2x+3y\right)\left(1-x\right)\left(1+x+x^2\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)

\(=-\dfrac{2\left(2x+3y\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)

\(=-\dfrac{2\left(x^2+x+1\right)}{2x+3y}\)

23 tháng 7 2017

giải

A=(3x-5)(2x+11)-(2x+3)(3x+7)

=6x^2+33x-10x-55-(6x^2+14x+9x+21)

=6x^2+33x-10x-55-6x^2-14x-9x-21

= -76

vậy biểu thức không phụ thuộc vào biến x,y

23 tháng 7 2017

B=(2x+3)(4x^2-6x+9)-2(4x^3-1)

=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2

=29

vậy biểu thức không phụ thuộc vào biến x

19 tháng 7 2017

đăng nhiều thế, từng câu 1 thôi bạn

19 tháng 7 2017

câu 20

\(\)\(C_{20}=\left(a^2+1\right)^2-4a^2=\left(a^2+1\right)^2-\left(2a\right)^2=\left[\left(a^2+1\right)-2a\right]\left[\left(a^2+1\right)+2a\right]\)\(C_{20}=\left[a^2-2a+1\right]\left[a^2+2a+1\right]=\left(a-1\right)\left(a-1\right)\left(a+1\right)\left(a+1\right)\)

\(C_{20}=\left(a-1\right)\left(a-1\right)\left(a+1\right)\left(a+1\right)\)

a: \(=\left(x+1\right)^3-27z^3\)

\(=\left(x+1-3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)

\(=\left(x-3z+1\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

b: \(4x^2+4x+1-9y^2\)

\(=\left(2x+1\right)^2-9y^2\)

\(=\left(2x+1+3y\right)\left(2x+1-3y\right)\)

c: \(=x^2-\left(y^2-2yz+z^2\right)\)

\(=x^2-\left(y-z\right)^2\)

\(=\left(x-y+z\right)\left(x+y-z\right)\)