K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

a: x+1>0

=>x>-1

b: -2x-3<0

=>-2x<3

=>x>-3/2

c: 4x+5>0

=>4x>-5

=>x>-5/4

d: -7x-3<0

=>-7x<3

=>x>-3/7

k: 3x+7>0

=>3x>-7

=>x>-7/3

l: -4x-1<0

=>-4x<1

=>x>-1/4

31 tháng 5 2017

a) \(\left|4x+3\right|-x=15\)

\(\Rightarrow\left|4x+3\right|=15+x\)

\(\Rightarrow\left[{}\begin{matrix}4x+3=15+x\\4x+3=-15+x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x-x=15-3\\4x-x=-15-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=12\\3x=-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)

b) \(A=\left|3x-2\right|\)

Dấu = xảy ra khi \(3x-2=0\)

\(\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)

Amin = 1 <=> x = 2/3

c) \(B=\left|2x+3\right|\le5\)

Dấu = xảy ra <=> 2x + 3 = 0 => 2x = -3 => x = -3/2

Bmax = 5 <=> x = -3/2

3 tháng 6 2017

Bạn ơi hai câu b, c họ bảo tìm x chứ có phải tìm GTLN, NN đâu

25 tháng 1 2020

a) \(\left|4x+3\right|-x=15\)\\

\(\Rightarrow\left|4x+3\right|=15+x.\)

\(\Rightarrow\left[{}\begin{matrix}4x+3=15+x\\4x+3=-15-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x-x=15-3\\4x+x=-15-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=12\\5x=-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{18}{5}\end{matrix}\right.\)

Vậy \(x\in\left\{4;-\dfrac{18}{5}\right\}.\)

b) \(\left|3x-2\right|-x>1\)

\(\Rightarrow\left|3x-2\right|>1+x.\)

\(\Rightarrow\left[{}\begin{matrix}3x-2>1+x\\3x-2< -1-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-x>1+2\\3x+x< -1+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x>3\\4x< 1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\Rightarrow\dfrac{1}{4}< x< \dfrac{3}{2}.\)

Vậy \(\dfrac{1}{4}< x< \dfrac{3}{2}\)

c) \(\left|2x+3\right|\le5\)

\(\Rightarrow\left[{}\begin{matrix}2x+3\le5\\2x+3\ge-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x\le2\\2x\ge-8\end{matrix}\right.

\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-4\end{matrix}\right.\Rightarrow-4\le x\le1.\)

Vậy \(-4\le x\le1\)

25 tháng 1 2020

a) \(\left|4x+3\right|-x=15\)

\(\Rightarrow\left|4x+3\right|=15+x.\)

\(\Rightarrow\left[{}\begin{matrix}4x+3=15+x\\4x+3=-15-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x-x=15-3\\4x+x=-15-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=12\\5x=-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{18}{5}\end{matrix}\right.\)

Vậy \(x\in\left\{4;-\dfrac{18}{5}\right\}.\)

b) \(\left|3x-2\right|-x>1\)

\(\Rightarrow\left|3x-2\right|>1+x.\)

\(\Rightarrow\left[{}\begin{matrix}3x-2>1+x\\3x-2< -1-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-x>1+2\\3x+x< -1+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x>3\\4x< 1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\Rightarrow\dfrac{1}{4}< x< \dfrac{3}{2}.\)

Vậy \(\dfrac{1}{4}< x< \dfrac{3}{2}\)

c) \(\left|2x+3\right|\le5\)

\(\Rightarrow\left[{}\begin{matrix}2x+3\le5\\2x+3\ge-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x\le2\\2x\ge-8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-4\end{matrix}\right.\Rightarrow-4\le x\le1.\)

Vậy \(-4\le x\le1\)

7 tháng 7 2017

a) \(x=-\frac{7}{12}\)

b) \(x=-\frac{13}{4}\)

c) \(x=\frac{7}{24}\)

d) \(x=\frac{49}{180}\)

e) \(x=-10\)

g) \(x=15\)

h) \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

a) Ta có: |4x+3|-x=15

⇒|4x+3|=15+x

\(\Rightarrow\left\{{}\begin{matrix}\left(4x+3\right)^2=\left(15+x\right)^2\\15+x\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}16x^2+24x+9=225+30x+x^2\\x\ge-15\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}15x^2-6x-216=0\\x\ge-15\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-3,6\end{matrix}\right.\)

Vậy: x∈{-3,6;4}

b) Ta có: |3x-2|-x>1

⇒|3x-2|>1+x

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2>1+x\\3x-2< -1-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x>3\\4x< 1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>\frac{3}{2}\\x< \frac{1}{4}\end{matrix}\right.\)

Vậy: \(\frac{1}{4}< x< \frac{3}{2}\)

c) Ta có: \(\left|2x+3\right|\le5\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\le5\\2x+3\ge-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x\le2\\2x\ge-8\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge-4\end{matrix}\right.\)

Vậy: \(-4\le x\le1\)

25 tháng 1 2020

a) \(\left|4x+3\right|-x=15\)

\(\Rightarrow\left|4x+3\right|=15+x.\)

\(\Rightarrow\left[{}\begin{matrix}4x+3=15+x\\4x+3=-15-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x-x=15-3\\4x+x=-15-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=12\\5x=-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=12:3\\x=\left(-18\right):5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{18}{5}\end{matrix}\right.\)

Vậy \(x\in\left\{4;-\frac{18}{5}\right\}.\)

b) \(\left|3x-2\right|-x>1\)

\(\Rightarrow\left|3x-2\right|>1+x.\)

\(\Rightarrow\left[{}\begin{matrix}3x-2>1+x\\3x-2< -1-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-x>1+2\\3x+x< -1+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x>3\\4x< 1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x>\frac{3}{2}\\x< \frac{1}{4}\end{matrix}\right.\Rightarrow\frac{1}{4}< x< \frac{3}{2}.\)

Vậy \(\frac{1}{4}< x< \frac{3}{2}\) thì \(\left|3x-2\right|-x>1.\)

c) \(\left|2x+3\right|\le5\)

\(\Rightarrow\left[{}\begin{matrix}2x+3\le5\\2x+3\ge-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x\le2\\2x\ge-8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\le2:2\\x\ge\left(-8\right):2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-4\end{matrix}\right.\Rightarrow-4\le x\le1.\)

Vậy \(-4\le x\le1\) thì \(\left|2x+3\right|\le5.\)

Chúc bạn học tốt!