Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
\(a,\text{ }\left|3x-2\right|-x>1\)
\(\left|3x-2\right|>x+1\)
TH1 : 3x - 2 < 0 => 3x < 3 => x < 1 thì :
\(3x-2>-x-1\)
\(3x+x>2-1\)
\(4x>1\)
\(x>\frac{1}{4}\)
=> \(\frac{1}{4}< x< 1\)
TH2 : 3x - 2 \(\ge\)0 => 3x \(\ge\)2 => x \(\ge\) \(\frac{2}{3}\) thì :
\(3x-2>x+1\)
\(3x-x>1+2\)
\(2x>3\)
\(x>\frac{3}{2}\)
Vậy \(\frac{1}{4}< x< 1\) hoặc \(x>\frac{3}{2}\)
a) Ta có: |4x+3|-x=15
⇒|4x+3|=15+x
\(\Rightarrow\left\{{}\begin{matrix}\left(4x+3\right)^2=\left(15+x\right)^2\\15+x\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}16x^2+24x+9=225+30x+x^2\\x\ge-15\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}15x^2-6x-216=0\\x\ge-15\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-3,6\end{matrix}\right.\)
Vậy: x∈{-3,6;4}
b) Ta có: |3x-2|-x>1
⇒|3x-2|>1+x
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2>1+x\\3x-2< -1-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x>3\\4x< 1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>\frac{3}{2}\\x< \frac{1}{4}\end{matrix}\right.\)
Vậy: \(\frac{1}{4}< x< \frac{3}{2}\)
c) Ta có: \(\left|2x+3\right|\le5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\le5\\2x+3\ge-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x\le2\\2x\ge-8\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge-4\end{matrix}\right.\)
Vậy: \(-4\le x\le1\)
a) \(\left|4x+3\right|-x=15\)
\(\Rightarrow\left|4x+3\right|=15+x.\)
\(\Rightarrow\left[{}\begin{matrix}4x+3=15+x\\4x+3=-15-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x-x=15-3\\4x+x=-15-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=12\\5x=-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=12:3\\x=\left(-18\right):5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{18}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{4;-\frac{18}{5}\right\}.\)
b) \(\left|3x-2\right|-x>1\)
\(\Rightarrow\left|3x-2\right|>1+x.\)
\(\Rightarrow\left[{}\begin{matrix}3x-2>1+x\\3x-2< -1-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-x>1+2\\3x+x< -1+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x>3\\4x< 1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>\frac{3}{2}\\x< \frac{1}{4}\end{matrix}\right.\Rightarrow\frac{1}{4}< x< \frac{3}{2}.\)
Vậy \(\frac{1}{4}< x< \frac{3}{2}\) thì \(\left|3x-2\right|-x>1.\)
c) \(\left|2x+3\right|\le5\)
\(\Rightarrow\left[{}\begin{matrix}2x+3\le5\\2x+3\ge-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x\le2\\2x\ge-8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\le2:2\\x\ge\left(-8\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-4\end{matrix}\right.\Rightarrow-4\le x\le1.\)
Vậy \(-4\le x\le1\) thì \(\left|2x+3\right|\le5.\)
Chúc bạn học tốt!
a: \(\left(2x+3\right)\left(3x-5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>=\dfrac{5}{3}\\x< =-\dfrac{3}{2}\end{matrix}\right.\)
b: \(\dfrac{x}{3-x}>-1\)
\(\Leftrightarrow\dfrac{x}{3-x}+1>0\)
\(\Leftrightarrow\dfrac{x+3-x}{3-x}>0\)
=>3-x>0
hay x<3
c: \(\dfrac{x-1}{x+5}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x-1}{x+5}-\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\dfrac{2x-2-3x-15}{2\left(x+5\right)}>=0\)
\(\Leftrightarrow\dfrac{x+17}{2\left(x+5\right)}< =0\)
=>-17<=x<-5
d: \(\dfrac{7}{4x^2-1}\ge0\)
=>4x2-1>0
=>(2x-1)(2x+1)>0
=>x>1/2 hoặc x<-1/2
a) \(\left|2x-3\right|-\dfrac{5}{2}=\dfrac{1}{3}\)
\(\left|2x-3\right|=\dfrac{1}{3}+\dfrac{5}{2}=\dfrac{2}{6}+\dfrac{15}{6}\)
\(\left|2x-3\right|=\dfrac{17}{6}\)
\(+)2x-3=\dfrac{17}{6}\Rightarrow2x=\dfrac{35}{6}\Rightarrow x=\dfrac{35}{12}\)
\(+)2x-3=\dfrac{-17}{6}\Rightarrow2x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{12}\)
vậy...
\(\left|x-1\right|+3x=1\\ \Rightarrow\left|x-1\right|=1-3x\\ \Rightarrow\left\{{}\begin{matrix}x-1=1-3x\\x-1=-1+3x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4x=2\\-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
Dấu ngoặc vuông nhé
thánh bấm nhầm
a) \(\left|4x+3\right|-x=15\)\\
\(\Rightarrow\left|4x+3\right|=15+x.\)
\(\Rightarrow\left[{}\begin{matrix}4x+3=15+x\\4x+3=-15-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x-x=15-3\\4x+x=-15-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=12\\5x=-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{18}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{4;-\dfrac{18}{5}\right\}.\)
b) \(\left|3x-2\right|-x>1\)
\(\Rightarrow\left|3x-2\right|>1+x.\)
\(\Rightarrow\left[{}\begin{matrix}3x-2>1+x\\3x-2< -1-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-x>1+2\\3x+x< -1+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x>3\\4x< 1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\Rightarrow\dfrac{1}{4}< x< \dfrac{3}{2}.\)
Vậy \(\dfrac{1}{4}< x< \dfrac{3}{2}\)
c) \(\left|2x+3\right|\le5\)
\(\Rightarrow\left[{}\begin{matrix}2x+3\le5\\2x+3\ge-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x\le2\\2x\ge-8\end{matrix}\right.
\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-4\end{matrix}\right.\Rightarrow-4\le x\le1.\)
Vậy \(-4\le x\le1\)
a) \(\left|4x+3\right|-x=15\)
\(\Rightarrow\left|4x+3\right|=15+x.\)
\(\Rightarrow\left[{}\begin{matrix}4x+3=15+x\\4x+3=-15-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x-x=15-3\\4x+x=-15-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=12\\5x=-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{18}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{4;-\dfrac{18}{5}\right\}.\)
b) \(\left|3x-2\right|-x>1\)
\(\Rightarrow\left|3x-2\right|>1+x.\)
\(\Rightarrow\left[{}\begin{matrix}3x-2>1+x\\3x-2< -1-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-x>1+2\\3x+x< -1+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x>3\\4x< 1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\Rightarrow\dfrac{1}{4}< x< \dfrac{3}{2}.\)
Vậy \(\dfrac{1}{4}< x< \dfrac{3}{2}\)
c) \(\left|2x+3\right|\le5\)
\(\Rightarrow\left[{}\begin{matrix}2x+3\le5\\2x+3\ge-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x\le2\\2x\ge-8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-4\end{matrix}\right.\Rightarrow-4\le x\le1.\)
Vậy \(-4\le x\le1\)