Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\\\Leftrightarrow 9x^2+12x+4-9x^2+12x-4=5x+38\\ \Leftrightarrow24x-5x=38\\ \Leftrightarrow19x=38\\\Leftrightarrow x=2\)
Vậy nghiệm của phương trình trên là \(2\)
\(b.3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\\\Leftrightarrow 3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\\ \Leftrightarrow3x^2-3x^2-12x+9x-3x=-12+9-9\\ \Leftrightarrow-6x=-12\\\Leftrightarrow x=2\)
Vậy nghiệm của phương trình trên là \(2\)
\(c.\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x-2\right)\\ \Leftrightarrow x^3-3x^2+3x-1-x\left(x^2+2x+1\right)=10x-5x^2-11x+22\\ \Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=10x-5x^2-11x+22\\\Leftrightarrow x^3-x^3-3x^2-2x^2+5x^2+3x-x-10x+11x=1+22\\ \Leftrightarrow3x=23\\\Leftrightarrow x=\frac{23}{3}\)
Vậy nghiệm của phương trình trên là \(\frac{23}{3}\)
\(d.\left(x+3\right)^2-\left(x-3\right)^2=6x+18\\ \Leftrightarrow x^2+6x+9-x^2+6x-9=6x+18\\ \Leftrightarrow12x-6x=18\\ \Leftrightarrow6x=18\\ \Leftrightarrow x=3\)
Vậy nghiệm của phương trình trên là \(3\)
\(e.\left(x+1\right)\left(x^2-x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\\\Leftrightarrow x^3+1-2x=x\left(x^2-1\right)\\\Leftrightarrow x^3+1-2x=x^3-x\\ \Leftrightarrow x^3-x^3-2x+x=-1\\ \Leftrightarrow-x=-1\\ \Leftrightarrow x=1\)
Vậy nghiệm của phương trình trên là \(1\)
\(f.\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\\\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\\ \Leftrightarrow x^3-x^3-6x^2+9x^2-3x^2+12x-3x=8+1+1\\ \Leftrightarrow9x=10\\ \Leftrightarrow x=\frac{10}{9}\)
Vậy nghiệm của phương trình trên là \(\frac{10}{9}\)
\(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\)
\(\Leftrightarrow9x^2+12x+4-9x^2+12x-4=5x+38\)
\(\Leftrightarrow24x-5x-38=0\)
\(\Leftrightarrow19x-38=0\)
\(\Leftrightarrow19\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
VẬY ..
Đáp án:
\(S=\left\{2\right\}\)
Lời giải:
a) \(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\)
\(\Leftrightarrow\left[\left(3x+2\right)-\left(3x-2\right)\right].\left(3x+2+3x-2\right)=5x+38\)
\(\Leftrightarrow\left(3x+2-3x+2\right).6x=5x+38\)
\(\Leftrightarrow24x=5x+38\)
\(\Leftrightarrow24x-5x=38\)
\(\Leftrightarrow19x=38\)
\(\Leftrightarrow x=2\)
Vậy phương trình có tập nghiệm là \(S=\left\{2\right\}\)
a, \(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=20x^2-20x+5+4x^2+12x-4x-12-50+60x-18x^2\)
\(=6x^2+48x-57\)
b, \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)
\(=81x^2-18x+1+1-10x+25x^2+18x-90x^2-2+10x\)
\(=16x^2\)
c;d;e;f tự làm, đầu I giữ lấy còn trường tồn:)
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x^2+2x-3\right)-2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+8x-12-50+60x-18x^2\)
\(=\left(20x^2+4x^2-18x^2\right)+\left(60x+8x-20x\right)+\left(5-12-50\right)\)
\(=6x^2+48x-57\)
a, 15x5 - 10x4 + 5x3 + 10x2
b, -2a5x4 + 10a3x2 - 6a2x
c, 6x4 - 2x3 - 15x2 + 23x - 6
d, a5 - b5
\(\left(3x+2\right)^2-\left(x-3\right)^2=5x+8\)
\(\Leftrightarrow\left(3x+2+x-3\right)\left(3x+2-x+3\right)=5x+8\)
\(\Leftrightarrow\left(4x-1\right)\left(2x+5\right)=5x+8\)
\(\Leftrightarrow8x^2+18x-5=5x+8\)
\(\Leftrightarrow8x^2+13x-13=0\)
Ta có \(\Delta=13^2+4.8.13=585,\sqrt{\Delta}=3\sqrt{65}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-13+3\sqrt{65}}{16}\\x=\frac{-3-3\sqrt{65}}{16}\end{cases}}\)