Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A luôn chia hết cho 3
Để A là bội của 12 thì A phải chia hết cho 4
Chứng minh A chia hết cho 4 thì bạn nhóm 2 số mũ hơn kém nhau vào làm 1 cặp là ra
thank you bạn. Bạn có thể giải ra luôn cho mình không
Để B là bội của 12 thì B phải chia hết cho 12 , hay có thể nói B phải vừa chia hết cho 3 và vừa chia hết cho 4.
Mà bản thân B đã chia hết cho 3 (do mọi số hạng của B đều chia hết cho 3) (1), nên chỉ cần chứng minh B chia hết cho 4!
Rút 3/4 ra:
=> B= (3/4)x(4 + 12 + 36 + 108 +... + 4649045868)
Có (4+12+36+108+...+4649045868) chia hết cho 4 (2)
Từ (1) và (2) => B chia hết cho 12.
Mình chỉ biết làm vậy thôi, cách của mình khi chứng minh chia hết cho 4 có nhiều số, mình cũng k bik cách ngắn hơn nữa, mong bạn hiểu.
B là B(12) thì B phải chia hết cho 12 hay B sẽ phải chia hết cho 3 và chia hêt cho 4.
Vì B đã chia hết cho 3 nên ta cần chứng minh B chia hết cho 4
Ta có: B=31+32+33+...+320
=(31+32)+(33+34)+...+(319+320)
=3(1+3)+33(1+3)+...+319(1+3)
=3.4+33.4+...+319+4
=4.(3+33+...+319)
Vì b chia hết cho 4 và 3 nên từ đó suy ra B chia hết cho 12
b1: 8x-3x+12=33
=>5x+12=27
=>5x=27-12
=>5x=15
=>x=3( chờ mik lm c2)
A=2+2^2+2^3+2^4+...+2^60
=>A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=>A=1.(2+2^2)+2^2.(2+2^2)+...+2^58(2+2^2)
=>A=6+2^2.6+...+2^58.6
=>A=2.3+2^2.2.3+...+2^58.2.3
=>A chia hết cho 3 vì mỗi số hạng đều chia hết cho 3
=>dpcm
b/đợi mik chút
A=2(1+2+22+23)+25(1+2+22+23)+......+257(1+2+22+23)
(2+25+...+257 ).(1+2+22+23)= (2+25+...+257 ).15
= (2+25+...+257 ).5.3 chia hết cho 3
B=3+32+ 32(3+32)+ 34(3+32)+....+ 318(3+32)
=(3+32).(1+32+34+...+318)
=12.(1+32+34+...+319) chia hết cho 12
2)
Nếu 3^n +1 là bội của 10 thì 3^n +1 có tận cùng là 0
=> 3n có tận cùng là 9
Mà : 3^n+4 +1 = 3^n . 3^4 = .....9 . 81 + 1 = .....9 +1 = ......0
hay 3^n+4 có tận cùng là 0 => 3^n+4 là bội của 10
Vậy 3^n+4 là bội của 10.
a) Ta có:
10^n + 8
= 1000..0 + 8 ( n số 0)
= 100...08 ( n - 1 số 0 )
Tổng các chữ số là: 1 + 0 + .. + 0 + 8 = 9 chia hết cho 9
=>100..00 8 chia hết cho 9
=> 10^n +8 chia hết cho 9
b) \(1531\) và \(2001\) là số lẻ nên tổng của chúng là số chẵn hay tổng của chúng chia hết cho \(2\).
c) Ta có: 10n+53=10.........0+125=100.....0125
\(\Rightarrow\) tổng các chữ số là: 1+0+...+0+1+2+5=9
Vì tổng các chữ số của 10n+53 \(⋮\) 3 và 9 ( \(9⋮\)3 và 9) nên 10n+53 chia hết cho 3 và 9.
bài 2 :
Gọi UCLN ( n+3; 2n+5) là d
\(\Rightarrow n+3⋮d;2n+5⋮d\)
\(\Rightarrow2n+6⋮d;2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
mà 1 là UCLN(n+3;2n+5)
\(\Rightarrow d=1\)