Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2013+2012^2(1+2012)+.......................+2011^6(1+2012) TA THẤY MOI SO DAU CO THUA SO 2012 +1 =2013 VAY NÓ CHIA HET CHO 13
1+2011=2012
VẦY TA CÓ 2011+1 + 2011^2+2011^2 X2011 +.......................2011^6 +2011^6 X 2011 SUUY RA 2012+2011^2(1+2011)+..........................+2016^6(1+2011)=(2011+1) X ( 2011^2+...............+2016^6) =2012(2011^2+...............+2016^6) TA THẤY 2012 CHIA HẾT CHO 2012 VẬY TỔNG NÀY CHIA HẾT CHO 2012
\(10A=10^{2012}+10^{2013}+10^{2014}+...+10^{2019}+160\)
\(9A=10A-A=10^{2019}-10^{2011}+160-16\)
\(9A=10^{2011}\left(10^8-1\right)+9\cdot16\)
\(9A=10^{2011}.99999999+9.16\)
\(9A=10^{2011}.11111111.9+9.16\)
\(A=10^{2011}.11111111+16\)
__________________________________________
\(A⋮48\Rightarrow A⋮16;A⋮3\) (1)
\(10:3\) dư 1
\(10^2:3\) dư 1
...
\(\Rightarrow10^{2011}:3\) dư 1
\(11111111=11100000+11100+11\)
\(11100000⋮3;11100⋮3;11:3\) dư 2
\(\Rightarrow11111111:3\) dư 2
\(16:3\) dư 1
\(\Rightarrow A:3\) dư \(1.2+1=3\)
\(\Rightarrow A⋮3\) (2)
__________________________________________
\(10^{2011}=2^{2011}.5^{2011}=2^4.2^{2007}.5^{2011}⋮2^4=16\)
Vì \(10^{2011}⋮16\) \(\Rightarrow10^{2011}.11111111⋮16\)
\(16⋮16\)
\(\Rightarrow A⋮16\) (3)
_________________________________________
Từ (1), (2) và (3) suy ra: \(A⋮48\) (đpcm)
vì số có chữ số tận cùng là 0 thì sẽ chia hết cho 2 và 5
vậy ta xét chữ số tận cùng của phép tính 20112012 - 20132012
20112012 có chữ số tận cùng là: 12012 = 14.503 = ( ....1)
20132012 có chữ số tận cùng là : 32012 = 34.503 = (....1)
20112012 - 20132012 = (....1) - (.....1) = (.....0)
vì kết quả của phép tính trên có chữ số tận cùng là 0 nên:
20112012 - 20132012 chia hết cho 2 và 5
Ta có : A = 2011 + 20112 + 20113 + .... + 20112011
=> A = 2011(1+20112 + 20113 + .... + 20112010)
=> A lẻ
=> A không chia hết cho 2012