Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B)2-9+1-3
.vì bỏ ngoặc trước nó là dấu trừ thì ta đổi dấu các số hạng trong ngoặc
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
\(\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{2}{9}\right)...\left(1-\dfrac{2005}{9}\right)\)
\(=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{2}{9}\right)...\left(1-\dfrac{9}{9}\right)...\left(1-\dfrac{2005}{9}\right)\)
\(=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{2}{9}\right)\cdot...\cdot0\cdot...\cdot\left(1-\dfrac{2005}{9}\right)=0\)
\(\left(1-\dfrac{1}{9}\right).\left(1-\dfrac{2}{9}\right)...\left(1-\dfrac{2005}{9}\right)\)
\(=\left(1-\dfrac{1}{9}\right).\left(1-\dfrac{2}{9}\right)...\left(1-\dfrac{9}{9}\right)...\left(1-\dfrac{2005}{9}\right)\)
\(=\left(1-\dfrac{1}{9}\right).\left(1-\dfrac{2}{9}\right)...0...\left(1-\dfrac{2005}{9}\right)=0\)
\(9^9*9^8*9^7*9^6*9^5*9^4*9^3*9^2*9^1*9^0=\)99+8+7+6+5+4+3+2+1+0 = 945
Theo đề ra ta có :
Trong dãy Q sẽ có một thừa số là : ( 9/9-1)
Hay (9/9-9/9)=0
Mà trong một tích nếu có một thừa số bằng 0 thì tích sẽ bằng 0
Suy ra : Q=0
\(I=\left(1-\frac{1}{9}\right)\left(1-\frac{2}{9}\right)\left(1-\frac{3}{9}\right)...\left(1-\frac{2005}{9}\right)\)
\(I=\left(1-\frac{1}{9}\right)\left(1-\frac{2}{9}\right)...\left(1-\frac{9}{9}\right)...\left(1-\frac{2005}{9}\right)\)
\(I=\left(1-\frac{1}{9}\right)\left(1-\frac{2}{9}\right)...\left(1-1\right)...\left(1-\frac{2005}{9}\right)\)
\(I=\left(1-\frac{1}{9}\right)\left(1-\frac{2}{9}\right)...0...\left(1-\frac{2005}{9}\right)\)
I = 0
=> I = 0
9/1+1/9+2/9+9/2
= 1/9+2/9+9+4,5
=1/3+13,5