Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-xz-9y^2+3yz\)
\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)
\(=\left[x^2-\left(3y\right)^2\right]-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
b) \(x^3-x^2-5x+125\)
\(=\left(x^3+125\right)-\left(x^2+5x\right)\)
\(=\left(x^3+5^3\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+5^2\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+5^2-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
c) \(x^3+2x^2-6x-27\)
\(=\left(x^3-27\right)-\left(2x^2-6x\right)\)
\(=\left(x^3-3^3\right)-2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+3^2\right)-2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+3^2-2x\right)\)
\(=\left(x-3\right)\left(x^2+x+9\right)\)
e) \(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left(4x^3-x\right)\)
f) \(x^6-x^4-9x^3+9x^2\)
\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x-1\right)\left[x^4\left(x+1\right)-9x^2\right]\)
\(=\left(x-1\right)\left(x^5+x^4-9x^2\right)\)
1/\(x^2+5x+6=0\)
=>\(x^2+2x+3x+6=0\)
=>\(x\left(x+2\right)+3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
Các câu sau làm tương tự câu 1, tách ghép khéo léo sẽ ra :)
\(A=5x-x^2=-\left(x^2-5x\right)=-\left[x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{5}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\left(x\in R\right)\)
Vậy \(Max_A=\frac{25}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
\(B=x-x^2=-\left(x^2-x\right)=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}^2\right)+\frac{1}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\left(x\in R\right)\)
Vậy \(Max_B=\frac{1}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.x.2+2^2-7\right)=-\left(x-2\right)^2+7\)
Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-2\right)^2+7\le7\left(x\in R\right)\)
Vậy \(Max_C=7\)khi \(x-2=0\Leftrightarrow x=2\)
\(D=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-2.x.3+3^2+2\right)=-\left(x-3^2\right)-2\)
Vì \(\left(x-3\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-3\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-3\right)^2-2\le-2\left(x\in R\right)\)
Vậy \(Max_D=-2\)khi \(x-3=0\Leftrightarrow x=3\)
\(E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+2.x.4+4^2-21\right)=-\left(x+4\right)^2+21\)
Vì \(\left(x+4\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x+4\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x+4\right)^2+21\le21\left(x\in R\right)\)
Vậy \(Max_E=21\)khi \(x+4=0\Leftrightarrow x=-4\)
F= \(4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-2.x.2+2^2-5\right)=-\left(x-2\right)^2+5\)
Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-2\right)^2+5\le5\left(x\in R\right)\)
Vậy \(Max_F=5\)khi \(x-2=0\Leftrightarrow x=2\)
a, -x - y2 + x2 - y = (x2 - y2) - (x + y)
= (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
b, x( x + y ) - 5x - 5y = x(x + y) - 5(x + y)
= (x - 5)(x + y)
c, x2 - 5x + 5y - y2 = (x - y)(x + y) - 5(x - y)
= (x - y)(x + y - 5)
d, 5x3 - 5x2y - 10x2 + 10xy = 5x2(x - y) - 10x(x - y)
= 5x(x - y)(x - 2)
e, 27x3 - 8y3 = (3x - 2y)(9x2 + 6xy + 4y2)
f, x2 - y2 - x - y = (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
g, x2 - y2 - 2xy + y2 = (x2 - 2xy + y2) - y2
= (x - y)2 - y2
= (x - y - y)(x - y + y) = x(x - 2y)
h, x2 - y2 + 4 - 4x = (x2 - 4x + 4) - y2
= (x - 2)2 - y2
= (x - y - 2)(x + y - 2)
i, x3 + 3x2 + 3x + 1 - 27z3 = (x + 1)3 - 27z3
= (x+1-3z)(x2+2x+1+3xz+3z+9z2)
k, 4x2 + 4x - 9y2 + 1 = (2x + 1)2 - 9y2
= (2x - 3y + 1)(2x + 3y + 1)
m, x2 - 3x + xy - 3y = x(x - 3) + y(x - 3)
= (x - 3)(x + y)
a) \(-x-y^2+x^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right).1\)
\(=\left(x+y\right)\left(x-y-1\right)\)
b) \(x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-5\right)\)
c) \(x^2-5x+5y-y^2\)
\(=\left(x^2-y^2\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
d) \(5x^3-5x^2y-10x^2+10xy\)
\(=5x\left(x^2-xy-2x+2y\right)\)
\(=5x\left[x\left(x-y\right)-2\left(x-y\right)\right]\)
\(=5x\left(x-y\right)\left(x-2\right)\)
e) \(27x^3-8y^3\)
\(=\left(3x\right)^3-\left(2y\right)^3\)
\(=\left(3x-2y\right)\left[\left(3x\right)^2+3x2y+\left(2y\right)^2\right]\)
\(=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
f) \(x^2-y^2-x-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
g) \(x^2-y^2-2xy+y^2\)
\(=\left(x^2-2xy+y^2\right)-y^2\)
\(=\left(x-y\right)^2-y^2\)
\(=\left(x-y-y\right)\left(x-y+y\right)\)
\(=\left(x-y^2\right)x\)
h) \(x^2-y^2+4-4x\)
\(=\left(x^2-4x+4\right)-y^2\)
\(=\left(x^2-2.2x+2^2\right)-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
i) \(x^6-y^6\)
\(=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(8x^2+6x^3=2x^2\left(4+3x\right)\)
\(x^3-5x^2-4x+20=x^2\left(x-5\right)-4\left(x-5\right)=\left(x^2-4\right)\left(x-5\right)=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)
\(x^2-9y^2-4x+4=\left(x^2-4x+4\right)-\left(3y\right)^2=\left(x-2\right)^2-\left(3y\right)^2=\left(x-2-3y\right)\left(x-2+3y\right)\)
a: \(8x^2+6x^3=2x^2\left(4+3x\right)\)
b: \(x^3-5x^2-4x+20\)
\(=x^2\left(x-5\right)-4\left(x-5\right)\)
\(=\left(x-5\right)\left(x-2\right)\left(x+2\right)\)
c: \(x^2-4x+4-9y^2\)
\(=\left(x-2\right)^2-9y^2\)
\(=\left(x-2-3y\right)\left(x-2+3y\right)\)