Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(-x^2+6x-19\)
\(=-\left(x^2-6x+19\right)\)
\(=-\left(x^2-6x+9+10\right)\)
\(=-\left(x-3\right)^2-10< 0\forall x\)
Sửa đề: \(A=3x^2-6x+4=3\left(x^2-2x+\dfrac{4}{3}\right)\)
\(A=3\left(x^2-2x+1+\dfrac{1}{3}\right)\)
\(A=3\left(x^2-2x+1\right)+1\)
\(A=3\left(x-1\right)^2+1>0\left(đpcm\right)\)
a) x2 - 2x + 4x - 8 = 0
=> x.(x - 2) + 4.(x - 2) = 0
=> (x - 2).(x + 4) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
b) x(x + 3) - 3x - 9 = 0
=> x.(x + 3) - 3.(x + 3) = 0
=> (x + 3).(x - 3) = 0
=> \(\orbr{\begin{cases}x+3=0\\x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
c) x2 - 6x + 5 = 0
=> x2 - x - 5x + 5 = 0
=> x.(x - 1) - 5.(x - 1) = 0
=> (x - 1).(x - 5) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
1/\(x^2-2x+4x-8=0\)
=>\(x\left(x-2\right)+4\left(x-2\right)=0\)
=>\(\left(x-4\right)\left(x-2\right)=0\)
=>\(\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
2/\(x\left(x+3\right)-3x-9=0\)
=>\(x\left(x+3\right)-3\left(x+3\right)=0\)
=>\(\left(x-3\right)\left(x+3\right)=0\)
=>\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)=>\(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
3/\(x^2-6x+5=0\)
=>\(x^2-x-5x+5=0\)
=>\(x\left(x-1\right)-5\left(x-1\right)=0\)
=>\(\left(x-5\right)\left(x-1\right)=0\)
=>\(\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\)=>\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
\(\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=x+1-\left(x-9\right)\)
\(\Rightarrow6x^2+27x+4x+18-6x^2-x-12x-2=10\)
\(\Rightarrow18x+16=10\)
\(\Rightarrow18x=-6\)
\(\Rightarrow x=-\frac{6}{18}=-\frac{1}{3}\)
a) =2x - 3 =0
x = 3/2
b) (5x -1)2 = 0
5x - 1 = 0
x = 1/5
c) = ( x +3)2 = 0
x+3 = 0
x = -3
d) =(13+y)(13-y) = 0
y = 13; -13
e) xem lại đề bài này
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x^2+x^3-2x^2\right)+\left(x^3+x^2-2x\right)+\left(6x^2+6x-12\right)=0\)
\(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=0\\x^2+x-2=0\end{matrix}\right.\)
* \(x^2+x+6=\left(x^2+x+\frac{1}{4}\right)+\frac{23}{4}=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\)
\(\Rightarrow x^2+x+6=0\) là vô lí
* \(x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
a) \(2x^3+x^2-4x-12\)
\(=2x^3-4x^2+5x^2-10x+6x-12\)
\(=2x^2\left(x-2\right)+5x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+5x+6\right)\)
b) \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(x+y\right)\left(5x+y\right)\)
\(\Leftrightarrow6x\left(x-3\right)-4\left(x-3\right)=0\Leftrightarrow2\left(x-3\right)\left(3x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{2}{3}\end{matrix}\right.\)