K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=2x^6-x^5-\dfrac{1}{3}x^4\)

b: \(=4xy^2-x^3+y^2-\dfrac{3}{4}x^2y\)

c: \(\left(3x^3-2xy^3+4y^2\right)\cdot\left(\dfrac{1}{6}x^2y^2\right)\)

\(=\dfrac{1}{2}x^5y^2-\dfrac{1}{3}x^3y^5+\dfrac{2}{3}x^2y^4\)

7 tháng 7 2018

\(x^4.\frac{2x^2-x-1}{3}\)

đúng k bn

7 tháng 7 2018

đúng rồi bạn Thanh Ngân ơi

Giups mình nhé

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

a,

$xy^2+x^2y+(-2xy^2)=xy^2-2xy^2+x^2y=-xy^2+x^2y$

b,

$12x^2y^3z^4+(-7x^2y^3z^4)=12x^2y^3z^4-7x^2y^3z^4=5x^2y^3z^4$

c,

$-6xy^3-(-6xy^3)+6x^3=-6xy^3+6xy^3+6x^3=0+6x^3=6x^3$

d,

$\frac{-x^2}{2}+\frac{7}{2}x^2+x=(\frac{7}{2}-\frac{1}{2})x^2+x$

$=3x^2+x$

e,

$2x^3+3x^3-\frac{1}{3}x^3=(2+3-\frac{1}{3})x^3=\frac{14}{3}x^3$

f,

$5xy^2+\frac{1}{2}xy^2+\frac{1}{4}xy^2=(5+\frac{1}{2}+\frac{1}{4})xy^2$

$=\frac{23}{4}xy^2$

29 tháng 5 2023

Vg, em cảm ưnn

 

25 tháng 10 2023

Bài 1: 

a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)

\(x^2\) -  16 - 5\(x\) - 5 + \(x^2\) + \(x\) 

= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)

= 2\(x^2\) - 4\(x\) - 21

25 tháng 10 2023

b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)

=  3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7

= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)

= - 3\(x^2\) + 3\(xy\) - 3

24 tháng 8 2023

Để tính các biểu thức trên, ta sẽ áp dụng quy tắc nhân đa thức.

a) 2xy(3x+1) = 6x^2y + 2xy

b) -6x^2y(4x-5) = -24x^3y + 30x^2y

c) -3x^2(4x^2y-6xy) = -12x^4y + 18x^3y

d) 1/2xy^2(2x+3) = xy^2 + 3/2xy^2

e) 8x^2y^2(1/4xy-1/2x^2) = 2xy - 4x^2y^2

f) 5x(x^2+3x+1) = 5x^3 + 15x^2 + 5x

g) -1/2x^2y(2xy+6) = -x^3y - 3x^2y

5 tháng 8 2017

Bài 2:

\(A=x^2+4y^2-2x+10-4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)

\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)

\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)

\(=x^2+2xy+y^2+2x+2y+1\)

\(=\left(x+y\right)^2+2\left(x+y\right)+1\)

Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)

\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)

\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)

Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)

\(D=x^2+y^2+2xy-4x-4y-3\)

\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:

\(D=4^2-4.4-3=16-16-3=-3\)

5 tháng 8 2017

Bài 3:

a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)

\(=-\left(3x-2\right)^2-1\)

Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)

Vậy N < 0

b) ghi đề cẩn thận lại đi, mk k hiểu

25 tháng 6 2018

\(a.\dfrac{x+1}{2x+6}+2x=\dfrac{x+1+4x^2+12x}{2x+6}=\dfrac{4x^2+13x+1}{2x+6}\) ( x # -3)

\(b.\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\) ( x # - 3)

Các câu còn lại tương tự .

25 tháng 6 2018

\(a,\dfrac{x+1}{2x+6}+2x\)

\(=\dfrac{x+1}{2x+6}+\dfrac{2x\left(2x+6\right)}{2x+6}\)

\(=\dfrac{x+1+4x^2+12x}{2x+6}\)

\(=\dfrac{4x^2+13x+1}{2x+6}\)

\(b,\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3x}{2x^2+6x}-\dfrac{x-6}{2x^2-6x}\)

\(=\dfrac{2x-6}{2x^2+6x}=\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}=\dfrac{x-3}{x^2+3x}\)

\(c,\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)

\(=\dfrac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\dfrac{x\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}-\dfrac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{2x}{x+2y}\)

\(d,\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{4-9x^2}\)

\(=\dfrac{3x+2}{\left(3x+2\right)\left(3x-2\right)}-\dfrac{3x-2}{\left(3x+2\right)\left(3x-2\right)}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{1}{3x+2}\)