Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(x-2\right)\left(x+15\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-2=0\\x+15=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\x=-15\end{matrix}\right.\)
Vậy \(x\in\left\{3;-15\right\}\)
Các phần khác làm tương tự
Bài 2:
Ta có: \(-\left(x-1\right)^2\le0\)
\(\Rightarrow M=2012-\left(x-1\right)^2\le2012\)
Vậy \(MIN_M=2012\) khi \(x=1\)
Bài 3:
Ta có: \(\left|x-3\right|\ge0\)
\(\Rightarrow N=\left|x-3\right|+10\ge10\)
Vậy \(MAX_M=10\) khi \(x=3\)
Bài 4:
Ta có: \(n-6⋮n-4\)
\(\Rightarrow\left(n-4\right)-2⋮n-4\)
\(\Rightarrow2⋮n-4\)
\(\Rightarrow n-4\in\left\{1;-1;2;-2\right\}\)
\(\left[\begin{matrix}n-4=1\\n-4=-1\\n-4=2\\n-4=-2\end{matrix}\right.\Rightarrow\left[\begin{matrix}n=5\\n=3\\n=6\\n=2\end{matrix}\right.\)
Vậy \(n\in\left\{5;3;6;2\right\}\)
Bài 5: Tương tự bài 4
Bài 1:
b)\(\left(x+15\right)\left(x-12\right)=0\)
\(\Rightarrow\left[\begin{matrix}x+15=0\\x-12=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=-15\\x=12\end{matrix}\right.\)
c)\(\left(x-7\right)\left(x+19\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-7=0\\x+19=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=7\\x=-19\end{matrix}\right.\)
d)\(\left(x-11\right)\left(x+5\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-11=0\\x+5=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=11\\x=-5\end{matrix}\right.\)
Bài 5:
\(\frac{n-5}{n-2}=\frac{n-2-3}{n-2}=\frac{n-2}{n-2}-\frac{3}{n-2}=1-\frac{3}{n-2}\in Z\)
\(\Rightarrow3⋮n-2\Rightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
= 20000000+2000000+100000+20000+1000+900+44
=22121944
Chúc bạn học tốt !
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1