K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

a) b) c) bạn bình phương 2 vế

d) pt <=>3-x=x+3+2.căn(x+2)

<=> -2x=2.căn (x+2)

<=>-x=căn (x+2) (x<=0)

<=> x^2=x+2

<=>x=-1 hoặc x=2

Xong bạn xét ĐKXĐ

16 tháng 11 2019

giải giúp tớ a , b,c luôn đi cậu :<

\(x^2-\sqrt{3}x-\sqrt{5}=0\)

Tính dental dc chứ - tự lm nha

\(\sqrt{2x_1}+\sqrt{2x_1}\)

\(\Leftrightarrow2x_1+2x_2+2\sqrt{4x_1x_2}\)

Tự lm lun nhoa đến 90 % rồi

NV
13 tháng 5 2019

\(\left\{{}\begin{matrix}2x+y=3\\x^2+y=5\end{matrix}\right.\) \(\Leftrightarrow x^2-2x=2\Leftrightarrow x^2-2x-2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\Rightarrow y=3-2x=1-2\sqrt{3}\\x=1-\sqrt{3}\Rightarrow y=1+2\sqrt{3}\end{matrix}\right.\)

Câu 2: \(x\ge-1\)

\(\left\{{}\begin{matrix}2\left(x+y\right)+\sqrt{x+1}=4\\2\left(x+y\right)-6\sqrt{x+1}=-10\end{matrix}\right.\) \(\Rightarrow7\sqrt{x+1}=14\)

\(\Rightarrow\sqrt{x+1}=2\Rightarrow x=3\)

\(\Rightarrow y=-5+3\sqrt{x+1}-x=2\)

11 tháng 8 2016

dauphai toan lop 4

11 tháng 8 2016

1.

\(x^3+2=3\sqrt[3]{3x-2}\Leftrightarrow x^3+3x=\left(3x-2\right)+3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\)thì \(x^3+3x=a^3+3a\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left[\frac{1}{2}x^2+\frac{1}{2}a^2+\frac{1}{2}\left(x+a\right)^2+3\right]=0\)

\(\Leftrightarrow x=a\Leftrightarrow.......\)

2.

\(x^2+\sqrt{x+5}=5\)\(\Leftrightarrow x^2+x+\frac{1}{4}=x+5-\sqrt{x+5}+\frac{1}{4}\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\sqrt{x+5}-\frac{1}{2}\right)^2\)\(\Leftrightarrow..........\)

3. Các hệ đối xứng như vầy, chỉ cần trừ theo vế 2 phương trình của hệ cho nhau để rút ra nhân tử chung.

a.

\(pt\left(1\right)-pt\left(2\right)\Leftrightarrow x^3-y^3=3x+8y-\left(3y+8x\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-xy+y^2\right)+5\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[\frac{1}{2}x^2+\frac{1}{2}y^2+\frac{1}{2}\left(x+y\right)^2+5\right]=0\)

\(\Leftrightarrow x=y\text{ }\left(do\text{ }.....................................>0\right)\)

thay vào một trong hai phương trình ban đầu giải nốt

b.

\(pt\left(1\right)-pt\left(2\right)\Leftrightarrow2x+y-\left(2y+x\right)=\frac{3}{x^2}-\frac{3}{y^2}\)

\(\Leftrightarrow x-y+\frac{3}{x^2y^2}\left(x^2-y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[1+\frac{3\left(x+y\right)}{x^2y^2}\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\text{ (3)}\\1+\frac{3\left(x+y\right)}{x^2y^2}=0\text{ (4)}\end{cases}}\)

Ta cần CM (4) làm hệ vô nghiệm

Từ pt(1) ta có: \(\frac{3}{x^2}>0\Rightarrow2x+y>0\)

Tương tự với pt(2) \(\frac{3}{y^2}>0\Rightarrow x+2y>0\)

Cộng theo vế: \(2x+y+x+2y>0\Rightarrow3\left(x+y\right)>0\)

Vậy \(1+\frac{3\left(x+y\right)}{x^2y^2}>0\) hay (4) bị loại.

Vậy (3) vào một phương trình đã cho giải nốt.

20 tháng 10 2021

\(ĐK:x\ge2\)

\(\sqrt{x+1}=\sqrt{x-2}+1\)

\(\Leftrightarrow x+1=x-1+2\sqrt{x-2}\)

\(\Leftrightarrow2\sqrt{x-2}=2\Leftrightarrow x=3\)

NV
18 tháng 6 2019

a/ \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\) xác định với mọi x

b/ \(\left\{{}\begin{matrix}x+3\ge0\\x+9\ge0\end{matrix}\right.\) \(\Rightarrow x\ge-3\)

c/ \(\left\{{}\begin{matrix}\frac{x-1}{x+2}\ge0\\x+2\ne0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)