K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Mk lm cho

18 tháng 3 2018

bn làm đi 

18 tháng 10 2019

Ta có: 4x2 - y2 + 4x + 4y - 3

= (4x2 - 4x + 1) - (y2 - 4y + 4)

= (2x - 1)2 - (y - 2)2

= (2x - 1 -y + 2)(2x - 1 + y - 2)

= (2x - y + 1)(2x + y - 3)

18 tháng 10 2019

\(4x^2-y^2+4x+4y-3\)

\(=\left(4x^2+4x+1\right)-\left(y^2-4y+4\right)\)

\(=\left(2x+1\right)^2-\left(y-2\right)^2\)

\(=\left(2x+1+y-2\right)\left(2x+1-y+2\right)\)

\(=\left(2x+y-1\right)\left(2x-y+3\right)\)

26 tháng 7 2020

a, Ta có : \(-x^2+2x-1-3\)

\(=-\left(x-1\right)^2-3\)

Ta thấy : \(\left(x-1\right)^2\ge0\forall x\)

=> \(-\left(x-1\right)^2-3\le-3\forall x\)

Vậy Max = -3 <=> x = 1 .

b, Ta có : \(-x^2-4x-4+4\)

\(=-\left(x+2\right)^2+4\)

Ta thấy : \(\left(x+2\right)^2\ge0\forall x\)

=> \(-\left(x+2\right)^2+4\le4\forall x\)

Vậy Max = 4 <=> x = -2 .

c, Ta có : \(-9x^2+24x-16-2\)

\(=-9\left(x^2-\frac{2.4x}{3}+\frac{16}{9}\right)-2\)

\(=-9\left(x-\frac{4}{3}\right)^2-2\)

Ta thấy : \(\left(x-\frac{4}{3}\right)^2\ge0\forall x\)

=> \(-9\left(x-\frac{4}{3}\right)^2-2\le-2\forall x\)

Vậy Max = -2 <=> x = \(\frac{4}{3}\) .

d, Ta có : \(-x^2+4x-4+3\)

\(=-\left(x-2\right)^2+3\)

Ta thấy : \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2+3\le3\forall x\)

Vậy Max = 3 <=> x = 2 .

e, Ta có : \(-x^2+2x-1-4y^2-4y-1+7\)

\(=-\left(x-1\right)^2-4\left(y^2+y+\frac{1}{4}\right)+7\)

\(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\)

Ta thấy : \(\left\{{}\begin{matrix}\left(x-1\right)^2\\\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\ge0\forall xy\)

=> \(\left\{{}\begin{matrix}-\left(x-1\right)^2\\-4\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\le0\forall xy\)

=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2\le0\forall xy\)

=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\le7\forall xy\)

Vậy Max = 7 <=> \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)

26 tháng 7 2020
https://i.imgur.com/0AA3SFZ.jpg
19 tháng 8 2017

\(a,7x^2-7xy-4x+4y\)

\(=7x\left(x-y\right)-4\left(x-y\right)\)

\(=\left(7x-4\right)\left(x-y\right)\)

\(b,2x-2y+ax-ay\)

\(=2\left(x-y\right)+a\left(x-y\right)\)

\(=\left(a+2\right)\left(x-y\right)\)

\(c,x^2-x-y^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

\(d,ax+ay-2x-2y\)

\(=a\left(x+y\right)-2\left(x+y\right)\)

\(=\left(a-2\right)\left(x+y\right)\)

\(e,x\left(a+b\right)-a-b=x\left(a+b\right)-\left(a+b\right)\)

\(=\left(x-1\right)\left(a+b\right)\)

25 tháng 7 2018

1. ac - ad + (c - d) = a(c - d) + (c - d) = (a + 1)(c - d)

2. ax + ay - x - y = a(x + y) - (x + y) = (a - 1)(x + y)

3. 4x + by + 4y + bx = 4(x + y) + b(x + y) = (b + 4)(x + y)

4. 1 - ax - x + a = a(1 - x) + (1 - x) = (a + 1)(1 - x)

25 tháng 7 2018

1. ac-ad +(c-d)

= a(c-d) +(c-d)

=(c-d) (a+1)

2. ax+ay-x-y

=(ax+ay)-(x+y)

= a(x+y)-(x+y)

=(x+y) (a-1)

3. 4x +by +4y+bx

=(4x+4y) +(bx+by)

=4(x+y) +b(x+y)

=(4+b) (x+y)

4.=(1+a)-(x+ax)

=(1+a)-x(1+a)

=(1+a)(1-x)

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

14 tháng 9 2015

12x3+4x2-27x-9=(12x3+4x2)-(27x-9)=4x2(3x+1)-32(3x+1)=(3x+1)(4x2-32)

cau b mjk chua ra 

bn thiếu rồi 

  • Trịnh Hoàng Đông Giang
14 tháng 8 2019

 TL:

\(4x^2-y^2+4x+1\)

\(=\left(2x-1\right)^2-y^2\)

\(=\left(2x-1+y\right)\left(2x-1-y\right)\)

14 tháng 8 2019

\(x^3-x+y^3-y\)

\(=\left(x+y\right)\left(x^2-xy+x^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+x^2-1\right)\)

26 tháng 12 2023

$x(x+y)+4x+4y$

$=x(x+y)+4(x+y)$

$=(x+y)(x+4)$

12 tháng 7 2017

TÌM GTNN , MIN ẤY