Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(=4a^2b^2-\left(2a^2b^2-2b^2c^2-2a^2c^2+a^4+b^4+c^4\right)\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(c+a-b\right)\left(c-a+b\right)\left(a+b-c\right)\left(a+b+c\right)\)
Nếu a,b,c là độ dài 3 cạnh thì ta có:
c + a > b (bất đẳng thức tam giác)
a + b > c (bất đẳng thức tam giác)
b + c > a (bất đẳng thức tam giác)
mà a,b,c > 0
=> a + b + c dương
a + c - b dương
a + b - c dương
b + c - a dương
=> A dương
Câu 1: \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=\left(a^4+b^4+c^4-2a^2b^2-2c^2a^2+2b^2c^2\right)-4b^2c^2=\left(a^2-b^2-c^2\right)^2-4b^2c^2=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]=\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)Câu 2: \(a^3+a^2-ab^2-b^2=a^2\left(a+1\right)-b^2\left(a+1\right)=\left(a^2-b^2\right)\left(a+1\right)=\left(a+b\right)\left(a-b\right)\left(a+1\right)\)
Câu 3: \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=a\left(b^3-c^3\right)-b\left[\left(b^3-c^3\right)+\left(a^3-b^3\right)\right]+c\left(a^3-b^3\right)=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(b-c\right)\left[b\left(c-a\right)+\left(c-a\right)\left(c+a\right)\right]=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
Câu 1.
a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2
= [ ( a4 - 2a2b2 + b4 ) - 2a2c2 + 2b2c2 + c4 ] - 4b2c2
= [ ( a2 - b2 )2 - 2( a2 - b2 )c2 + ( c2 )2 ] - ( 2bc )2
= ( a2 - b2 - c2 ) - ( 2bc )2
= ( a2 - b2 - c2 - 2bc )( a2 - b2 - c2 + 2bc )
= [ a2 - ( b2 + 2bc + c2 ) ][ a2 - ( b2 - 2bc + c2 ) ]
= [ a2 - ( b + c )2 ][ a2 - ( b - c )2 ]
= ( a - b - c )( a + b + c )( a - b + c )( a + b - c )
Câu 2.
a3 + a2 - ab2 - b2
= a2( a + 1 ) - b2( a + 1 )
= ( a + 1 )( a2 - b2 )
= ( a + 1 )( a - b )( a + b )
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b
ra gần hết rồi để ghi ra cho,
đặt a-b = x, b-c = y, c-a = z
(a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
<=> x^2+y^2+z^2=(y-z)^2+(z-x)^2+(x-y)^2
tới đây suy ra đpcm là đc