Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{4}+\sqrt{15}-\sqrt{4}-\sqrt{15}-\sqrt{2}-\sqrt{3}\)
\(=-\sqrt{3}-\sqrt{2}\)
Phép tính:
\(2\times\sqrt{15}-2\times\sqrt{10}+\sqrt{6}=1421411372\)
\(2\times\sqrt{15}-2\times\sqrt{10}+\sqrt{3}+\sqrt{6}=5602951922\)
P/s: Em ko biết đúng hay sai đâu mới lớp 4 thôi à
a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)
\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)
\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)
\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)
\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)
\(=-8\sqrt{3}\)
b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)
\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)
\(B=\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}< 0\)
\(\Rightarrow B^2=4-\sqrt{15}-2\sqrt{4-\sqrt{15}}.\sqrt{4+\sqrt{15}}+4+\sqrt{15}\)
\(=8-2\sqrt{4^2-\left(\sqrt{15}\right)^2}=8-2=6\)
\(\Rightarrow B=-\sqrt{6}\)
(Vì \(\sqrt{4-\sqrt{15}}< \sqrt{4+\sqrt{15}}\)nên B nhận dấu âm)
(√10−√15+3√3)√5−√72(10−15+33)5−72
=√15−√15+15−6√2=15−15+15−62
\(=\)15−6√2
(15√50+5√200−3√450)8√10(1550+5200−3450)810
=(15.5√2+5.10√2−3.15√2)8√10=(15.52+5.102−3.152)810
=