Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2015.2017}\)4/1.3 + 4/3.5 + 4/5.7 + ... + 4/2015.2017
M = \(2.\frac{2}{1.3}+2.\frac{2}{3.5}+2.\frac{2}{5.7}+...+2.\frac{2}{2015.2017}\) 2 . 2/1.3 + 2 . 2/3.5 + 2 . 2/5.7 + ... + 2 . 2/2015.2017
M = 2 . ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2015.2017 )
M = 2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2015 - 1/2017 )
M = 2 . ( 1 - 1/2017 )
M = 2 . 2016/2017
M = 4032/2017
\(M=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(M=2\left(1-\frac{1}{2017}\right)\)
\(M=\frac{4032}{2017}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{2015.2017}\)
\(=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2015.2017}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{2017}\right)\)
\(=\frac{3}{2}.\frac{2016}{2017}\)
\(=\frac{3024}{2017}\)
_Chúc bạn học tốt_
B=1/1.3+1/3.5+...+1/2015.2017
B= 1/2 . 2. ( 1/1.3+1/3.5 + .... + 1/2015 .2017)
B = 1/2 . ( 2/1.3 + 2/3.5 + ......+ 2/2015.2017)
B = 1/2. ( 1/1+ -1/3 + 1/3 + -1/5 + 1/5 +....+ 1/2015 + -1/2017)
B= 1/2 . ( 1/1 + -1 / 2017) = 1/2 . 2016 / 2017 = 2016 / 4034
Vậy B = 2016 / 4034 nha bn.pham hong thai
Dễ thôi:
Khoảng cách là 2
\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\frac{1}{2}.\left(1-\frac{1}{2017}\right)=\frac{1}{2}.\frac{2016}{2017}=\frac{1008}{2017}\)
Ta có : \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2015.2017}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2015.2017}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\frac{2016}{2017}=\frac{1008}{2017}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2015.2017}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\frac{2016}{2017}\)
\(=\frac{1008}{2017}\)
\(\frac{2016}{1.3}+\frac{2016}{3.5}+\frac{2016}{5.7}+....+\frac{2016}{2015.2017}\)
\(=1008.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\right)\)
\(=1008.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=1008.\left(1-\frac{1}{2017}\right)\)
\(=1008.\frac{2016}{2017}\)
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+...........+\dfrac{4}{2015.2017}\)
\(=2\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{2015.2017}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+.........+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)
\(=2\left(1-\dfrac{1}{2017}\right)\)
\(=2.\dfrac{2016}{2017}=\dfrac{4032}{2017}\)
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+...+\dfrac{4}{2015.2017}\)
= 2.(\(\dfrac{2}{1.3}+\dfrac{1}{3.5}+...+\dfrac{2}{2015.2017}\))
= 2.(1 - \(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\))
= 2.(1 - \(\dfrac{1}{2017}\))
= 2.\(\dfrac{2016}{2017}\)
= \(\dfrac{4032}{2017}\)
@Nguyễn Thị Ngọc Anh