K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

Dễ thôi:

Khoảng cách là 2

\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\frac{1}{2}.\left(1-\frac{1}{2017}\right)=\frac{1}{2}.\frac{2016}{2017}=\frac{1008}{2017}\)

20 tháng 6 2020

cảm ơn bạn đã giúp mình!!

10 tháng 8 2016

\(\frac{2016}{1.3}+\frac{2016}{3.5}+\frac{2016}{5.7}+....+\frac{2016}{2015.2017}\)

\(=1008.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\right)\)

\(=1008.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(=1008.\left(1-\frac{1}{2017}\right)\)

\(=1008.\frac{2016}{2017}\)

10 tháng 8 2016

147852.

=1-1/3+1/3-1/5+...+1/2015-1/2017

=1-1/2017

=2016/2017

21 tháng 8 2016

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\), ta có:

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}.\frac{2016}{2017}=\frac{1008}{2017}\)

21 tháng 8 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2017}\)

\(=1-\frac{1}{2017}\)

\(=\frac{2016}{2017}\)

mk đầu tiên đấy

31 tháng 3 2017

M = \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2015.2017}\)4/1.3 + 4/3.5 + 4/5.7 + ... + 4/2015.2017

M = \(2.\frac{2}{1.3}+2.\frac{2}{3.5}+2.\frac{2}{5.7}+...+2.\frac{2}{2015.2017}\) 2 . 2/1.3 + 2 . 2/3.5 + 2 . 2/5.7 + ... + 2 . 2/2015.2017

M = 2 . ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2015.2017 )

M = 2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2015 - 1/2017 )

M = 2 . ( 1 - 1/2017 )

M = 2 . 2016/2017

M = 4032/2017

31 tháng 3 2017

\(M=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(M=2\left(1-\frac{1}{2017}\right)\)

\(M=\frac{4032}{2017}\)

16 tháng 5 2016

A=3/1*3+3/3*5+3/5*7+...+3/2015*2017

A=3/2*(2/1*3+2/3*5+2/5*7+...+2/2015*2017)

A=3/2*(1-1/3+1/3-1/5+1/5-1/7+...+1/2015-1/2017)

A=3/2*(1-1/2017)

A=3/2*2016/2017

A=3024/2017

16 tháng 5 2016

A= \(\frac{3}{1.3}\)+\(\frac{3}{3.5}\)+\(\frac{3}{5.7}\)+....+\(\frac{3}{2015.2017}\)

A= \(\frac{3}{2}\).(\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+...+\(\frac{2}{2015.2017}\))

A= \(\frac{3}{2}\).( 1- \(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+... \(\frac{1}{2015}\)\(\frac{1}{2017}\))

A= \(\frac{3}{2}\).(1- \(\frac{1}{2017}\))

A= \(\frac{3}{2}\)\(\frac{2016}{2017}\)

A= \(\frac{3024}{2017}\)