K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
6 tháng 6 2024

\(4-\dfrac{2+\dfrac{1}{2}}{2-\dfrac{1}{2}}=4-\dfrac{\dfrac{4}{2}+\dfrac{1}{2}}{\dfrac{4}{2}-\dfrac{1}{2}}\\ =4-\dfrac{\dfrac{5}{2}}{\dfrac{3}{2}}=4-\dfrac{5}{3}\\ =\dfrac{12}{3}-\dfrac{5}{3}=\dfrac{7}{3}\)

1 tháng 12 2023

A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)

Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)

      TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1 

      TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)

      TS =  2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))

A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)

 A = 2023

1 tháng 12 2023

Em cảm ơn ạ

5 tháng 11 2017

bạn tham khảo nha, cách làm như vậy đó

Câu hỏi của Nguyễn Thị Mai Ca - Toán lớp 7 - Học toán với OnlineMath 

5 tháng 11 2017

ban kia lam dung roi do

k tui nha 

thanks

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

\(a,\dfrac{1}{2}x=3+2\)

\(\dfrac{1}{2}x=5\)

\(x=5\div\dfrac{1}{2}\)

\(x=10\)

\(b,\dfrac{1}{4}x^2-\sqrt{36}=10\)

\(\dfrac{1}{4}x^2-6=10\)

\(\dfrac{1}{4}x^2=10+6\)

\(\dfrac{1}{4}x^2=16\)

\(x^2=16\div\dfrac{1}{4}\)

\(x^2=64\)

\(x^2=\left(8\right)^2\)

\(\Rightarrow x=8\)

25 tháng 12 2022

Em cảm ơn nhiều ạ

17 tháng 6 2018

a, \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ 3B=3+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\\ 3B-B=\left(3+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\right)\\2B=3-\dfrac{1}{3^{2005}}\\ B=\dfrac{3-\dfrac{1}{3^{2005}}}{2}\)

b,

\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\\ 5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\\ 5A-A=\left(5+5^2+5^3+5^4+...+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{49}+5^{50}\right)\\ 4A=5^{51}-1\\ A=\dfrac{5^{51}-1}{4}\)

c,

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2-1}\right)......\left(\dfrac{1}{100^2-1}\right)\\ A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)......\left(\dfrac{1}{10000}-1\right)\\ A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\cdot\cdot\cdot\dfrac{9999}{10000}\\ A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\cdot\cdot\cdot\dfrac{99\cdot101}{100\cdot100}\\ A=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\\ A=\dfrac{1}{100}\cdot\dfrac{101}{2}\\ A=\dfrac{101}{200}\)

17 tháng 6 2018

d,

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ A=\left(2^{100}+2^{98}+...+2^2\right)-\left(2^{99}+2^{97}+...+2^1\right)\)

Đặt \(A=B-C\)

\(\Rightarrow B=\left(2^{100}+2^{98}+...+2^2\right)vàC=\left(2^{99}+2^{97}+...+2^1\right)\)

\(B=2^{100}+2^{98}+...+2^2\\ 4B=2^{102}+2^{100}+...+2^4\\ 4B-B=\left(2^{102}+2^{100}+...+2^4\right)-\left(2^{100}+2^{98}+...+2^2\right)\\ 3B=2^{102}-2^2\\ B=\dfrac{2^{102}-2^2}{3}\left(1\right)\)

\(C=2^{99}+2^{97}+...+2^1\\ 4C=2^{101}+2^{99}+...+2^3\\ 4C-C=\left(2^{101}+2^{99}+...+2^3\right)-\left(2^{99}+2^{97}+...+2\right)\\ 3C=2^{101}-2\\ C=\dfrac{2^{101}-2}{3}\left(2\right)\)

Từ (1) và (2) ta có :

\(A=\dfrac{2^{102}-2^2}{3}-\dfrac{2^{101}-2}{3}\\ A=\dfrac{2^{102}-2^2-2^{101}+2}{3}\\ A=\dfrac{2^{102}-2^{101}+2}{3}\)

1 tháng 8 2017

1)

a) \(\frac{x}{6}\)\(\frac{7}{3}\)

\(\Rightarrow\)x.3=6.7

\(\Rightarrow\)x.3=42

\(\Rightarrow\)x   =42:3

\(\Rightarrow\)x   =14

b) làm tương tự như câu a

c) làm tương tự như câu

 d) làm tương tư như câu a nhưng hơi phúc tạp một chút là bn phải đổi ra từ hỗn số ra phân số hoặc số nguyên

e) tương tự câu d

f) làm tương tự như câu d

2)

a) 3x:\(\frac{27}{10}\)=\(\frac{1}{3}\)\(2\frac{1}{4}\)

3x: \(\frac{27}{10}\) = \(\frac{1}{3}\)\(\frac{9}{4}\)

3x: \(\frac{27}{10}\) = \(\frac{4}{27}\)

3x       = \(\frac{4}{27}\)\(\frac{27}{10}\)

3x       = \(\frac{2}{5}\)

 x        = \(\frac{2}{5}\):  3

x         = \(\frac{2}{15}\)

Các câu còn lại bn làm tương tự như câu a nha

3) 

Làm tương tự như bài 2 nha

 mik khuyên bn nếu bn giải bài thì bn nên đổi ra cùng một kiểu số thì tốt hơn như số số thập phân thì thập phân hết ấy

Cuối cùng chúc bn học giỏi

\(=\dfrac{5}{21}+\dfrac{16}{21}-\left(\dfrac{19}{23}+\dfrac{4}{23}\right)+\dfrac{1}{2}=\dfrac{1}{2}\)

28 tháng 6 2017

a

= { 1*( 1+1/2+1/3+1/4) } / { 1 * ( 1-1/2 +1/3-1/4)} : { 3*(1+1/2+1/3+1/4)} / { 2*( 1-1/2 +1/3-1/4)}

Sau đó bn tự tính ra nhé cứ tính nhu bình thường sẽ ra.

Mà mình thấy máy câu này yêu cầu tính chứ có bảo tính theo cách hợp lí đâu? Vì thế bn cứ lấy máy tính tính như bình thường là được .

20 tháng 7 2017

Kết quả là : C1=\(\dfrac{2}{3}\)