Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 :
Ta có :
abab = 1000a + 100b + 10 a + b
= 1010a + 101b
= 101 ( 10a + b )
Vì 101 chia hết cho 101
=> 101 ( 10a + b ) chia hết cho 101
Vậy abab là bội của 101
bài 2
Ta có :
aaabbb = 111000a + 111b
= 37 ( 3000a + 3 b )
Vì 37 chia hết cho 37
=> 37 ( 3000a + 3b ) chia hết cho 37
Vậy 37 là ước của aaabbb
Ta có :
\(abab=1000a+100b+10b+a\)
\(=\left(1000a+a\right)+\left(100b+1b\right)=a\left(1000+1\right)+b\left(100+1\right)\)
\(=a.1001+b.101\)
Ta thấy :
\(a.1001⋮11\)
\(b.101⋮11\)
\(\Rightarrow a.1001+b.101⋮11\)
Vậy \(11\) là ước của số có dạng \(abab\)
Ta có:
\(abab=ab00+ab\)
\(abab=100ab+1ab\)
\(abab=\left(100+1\right)ab\)
\(abab=101ab\)
Vì 101ab chia hết cho 101
=> abab chia hết cho 101
Vậy abab là hợp số
a﴿ Ta có : abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số
=> abab không phải là số chính phương
b﴿ Ta có : abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.
Mà abc là số có 3 chữ số
=> abcabc không phải là số chinh phương
c﴿ Ta có : ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể bằng 10101.
Mà ab là số có hai chữ số.
=> ababab không phải là số chính phương.
Vậy : abab ; abcabc ; ababab ko phải là số chính phương
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
a) A = 20 + 21 + 22 + ... + 299
2A = 21 + 22 + 23 + ... + 2100
2A - A = (21 + 22 + 23 + ... + 2100) - (1 + 2 + 22 + ... + 299)
A = 2100 - 1
A + 1 = 2100 - 1 + 1 = 2100 = (250)2
\(\Rightarrow\) A là số chính phương
b) B = 3 + 32 + 33 + ... + 399
3B = 32 + 33 + 34 + ... + 3100
3B - B = (32 + 33 + 34 + ... + 3100) - (3 + 32 + 33 + ... + 399)
2B = 3100 - 3
2B + 3 = 3100 - 3 + 3 = 3100 = (350)2
\(\Rightarrow\) B là số chính phương
Ta có \(\overline{abab}=101\cdot ab\)
Mà như ta đã biết số chính phương là số có căn bậc hai là số tự nhiên
Giả sử đặt c là căn bậc hai của \(\overline{abab}\)( c là số tự nhiên)
Suy ra \(c^2=\overline{abab}=101\cdot\overline{ab}\)
Ta có \(c^2=101\cdot\overline{ab}\)
để số \(c^2\)có nghĩa thì \(\overline{ab}=101\)
Trong khi đó \(\overline{ab}\)là số có hai chữ số nên
\(\overline{ab}\ne101\)
Suy ra \(c^2\)không có nghĩa
Suy ra \(\overline{abab}\)không phải là số chính phương
Câu 2 làm tương tự
ta co abab chac chan chia het cho 101 va co 2 uoc chac chan nua la abab va 1
vay abab chac chan la hop so