K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107`

\(A=1+2^1+2^2+2^3+...+2^{2015}\)

\(2A=2+2^2+2^3+2^4+...+2^{2016}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)

\(A=2^{2016}-1\)

Vậy, \(A=2^{2016}-1.\)

28 tháng 9 2023

\(A=2^0+2^1+2^2+...+2^{2015}\)

\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)

\(A=2A-A=2^{2016}-2^0\)

\(A=2^{2016}-1\)

 

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^2013(1+2+2^2)+2^2016

=7(1+2^3+...+2^2013)+2^2016

Vì 2^2016 chia 7 dư 1

nên A chia 7 dư 1

29 tháng 10 2023

Ta có: \(A=1+2+2^2+...+2^{2015}\)

\(2A=2\cdot\left(1+2+2^2+...+2^{2015}\right)\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(2A-A=2+2^2+...+2^{2016}-1-2-2^2-...-2^{2015}\)

\(A=2^{2016}-1\)

A không thể biết dưới dạng lũy thừa của 8 được 

29 tháng 10 2023

A=220161

1 tháng 9 2023

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

1 tháng 9 2023

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

23 tháng 10 2023

Bài 1

S₂ = 21 + 23 + 25 + ... + 1001

Số số hạng của S₂:

(1001 - 21) : 2 + 1 = 491

⇒ S₂  = (1001 + 21) . 491 : 2 = 250901

--------

S₄  = 15 + 25 + 35 + ... + 115

Số số hạng của S₄:

(115 - 15) : 10 + 1 = 11

⇒ S₄ = (115 + 15) . 11 : 2 = 715

23 tháng 10 2023

Bài 2

a) 2x - 138 = 2³.3²

2x - 138 = 8.9

2x - 138 = 72

2x = 72 + 138

2x = 210

x = 210 : 2

x = 105

b) 5.(x + 35) = 515

x + 35 = 515 : 5

x + 35 = 103

x = 103 - 35

x = 78

c) 814 - (x - 305) = 712

x - 305 = 814 - 712

x - 305 = 102

x = 102 + 305

x = 407

d) 20 - [7.(x - 3) + 4] = 2

7(x - 3) + 4 = 20 - 2

7(x - 3) + 4 = 18

7(x - 3) = 18 - 4

7(x - 3) = 14

x - 3 = 14 : 7

x - 3 = 2

x = 2 + 3

x = 5

e) 9ˣ⁻¹ = 9

x - 1 = 1

x = 1 + 1

x = 2

25 tháng 8 2023

\(A=1+2^1+2^2+...+2^{2015}\)

\(2\cdot A=2^1+2^2+2^3+...+2^{2015}+2^{2016}\)

\(2A-A=2^1+2^2+2^3+...+2^{2015}+2^{2016}-\left(1+2^1+2^2+...+2^{2015}\right)\)

\(A=2^{2016}-1\)

1−2−3+4+5−6−7+8+...+21−22−23+24+25

= (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (21 - 22 - 23 + 24) + 25=(1−2−3+4)+(5−6−7+8)+...+(21−22−23+24)+25

= 0 + 0 + ... + 0 + 25=0+0+...+0+25

= 25

25 tháng 2 2021

20<21

21<22

22<23

23<24

24<25