Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\frac{2x}{x-1}\)( Điều kiện \(x\ne0\))
VT = \(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-\frac{3x^2}{3x}-\frac{3x}{3x}\right)\right].\frac{x}{x-1}\)
\(=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1-3x^2-3x}{3x}\right)\right].\frac{x}{x-1}\)
\(=\left(\frac{2}{3x}-\frac{2}{x+1}.\frac{-3x\left(x+1\right)+\left(x+1\right)}{3x}\right).\frac{x}{x-1}\)
\(=\left(\frac{2}{3x}-\frac{2}{x+1}.\frac{\left(x+1\right)\left(-3x+1\right)}{3x}\right).\frac{x}{x-1}\)
\(=\frac{2}{3x}-\frac{2x\left(-3x+1\right)}{3x}.\frac{x}{x-1}\)
\(=\left(\frac{2+6x-2}{3x}\right).\frac{x}{x-1}\)
\(=\frac{6x}{3x}.\frac{x}{x-1}\)
\(=\frac{2x}{x-1}=VP\)
Vậy đẳng thức được chứng minh .
\(\Leftrightarrow\)2(9x2+6x+1)=(3x+1)(x-2)
\(\Leftrightarrow\)2(3x+1)2-(3x+1)(x-2)=0
\(\Leftrightarrow\)(3x+1)[2(3x+1)-(x-2)]=0
\(\Leftrightarrow\)(3x+1)(6x+2-x+2)=0
\(\Leftrightarrow\)(3x+1)(5x+4)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\Leftrightarrow3x=-1\Leftrightarrow x=\frac{-1}{3}\\5x+4=0\Leftrightarrow5x=-4\Leftrightarrow x=\frac{-4}{5}\end{cases}}\)
\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-\frac{4}{5}\end{cases}}}\)
Vậy phương trình trên có tập nghiệm \(S=\left\{-\frac{1}{3};-\frac{4}{5}\right\}\)
Ta có :\(\left(x+1\right)\left(x^2-x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^3+1-2x=x\left(x^2-1\right)\)
\(\Leftrightarrow x^3-2x+1=x^3-x\)
\(\Leftrightarrow-x+2x=1\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)là nghiệm của phương trình.
\(A=\left(3x-4\right)^2-4\left(x+1\right)^2=0\)
\(\Rightarrow\left(3x-4\right)^2-2^2\left(x+1\right)^2=0\)
\(\Rightarrow\left(3x-4\right)^2-\left(2x-2\right)^2=0\)
\(\Rightarrow\left(3x-4-2x+2\right)\left(3x-4+2x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(5x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\5x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{6}{5}\end{cases}}\)
\(\left(3x+1\right)\left(x+3\right)=\left(2-x\right)\left(5-3x\right)\)
\(\Leftrightarrow3x^2+10x+3=10-11x+3x^2\)
\(\Leftrightarrow21x=7\)
\(\Leftrightarrow x=\frac{7}{21}=\frac{1}{3}\)
Vậy : \(x=\frac{1}{3}\)