Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=5+5^2+5^3+5^4+...5^99
=> 5S=5^2+5^3+5^4+...5^100
=> 5S-S=4S=(5^2+5^3+5^4+...5^100)-(5+5^2+5^3+5^4+...5^99)
=> 4S = 5100-5
=> S=(5100-5)/4
S=5*5^2*5^3*5^4*...5^99
=> S=51+2+3+...+99
=> S=5((99+1).99):2
=> S=54950
(3x-2)+16=125+12
(3x-2)+16=137
3x-2=121
3x=123
x=41
5s=5^2+5^3+5^4+5^5+......+5^100
5s-s=5^100-5
4s=5^100-5
s=(5^100-5):4
kick nhé
\(\left(3x-2\right)^2+4^2=5^3+3.2^2\\ \Rightarrow\left(3x-2\right)^2+16=125+12\\ \Rightarrow\left(3x-2\right)^2=121\\ \Rightarrow3x-2=11\\ \Rightarrow x=\frac{13}{3}\)
S= \(5+5^2+5^3+.....+5^{99}\\ \Rightarrow5S=5^2+5^3+5^4+.....+5^{100}\\ \Rightarrow4S=5^{100}-5\\ \Rightarrow\frac{5^{100}-5}{4}\)
S=\(5.5^2.5^3.5^4.........5^{99}=5^{1+2+3+4+....+99}=5^{4950}\)
S=5+52+53+54+...+599
5S=52+53+54+...+599
5S-S=(52-52)+(53-53)+...+(599-599)+5100+5
S=(5100+5):4
Bài 1 :
a, \(\frac{3}{4}:x=\frac{5}{12}\)
\(x=\frac{3}{4}:\frac{5}{12}\)
\(x=\frac{9}{5}\)
b, \(x-\frac{1}{2}=\frac{3}{4}:\frac{3}{2}\)
\(x-\frac{1}{2}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{1}{2}\)
\(x=1\)
c, \(1\frac{1}{2}x-\frac{1}{2}=\frac{3}{4}\)
\(\frac{3}{2}x-\frac{1}{2}=\frac{3}{4}\)
\(\frac{3}{2}x=\frac{3}{4}+\frac{1}{2}\)
\(\frac{3}{2}x=\frac{5}{4}\)
\(x=\frac{5}{4}:\frac{3}{2}\)
\(x=\frac{5}{6}\)
Bài 2 :
\(A=\frac{-3}{5}+\left(\frac{-2}{5}-99\right)\)
\(A=\frac{-3}{5}+\frac{-2}{5}-99\)
\(A=\left(-1\right)-99\)
\(A=-100\)
\(B=\left(7\frac{2}{3}+2\frac{3}{5}\right)-6\frac{2}{3}\)
\(B=\left(\frac{23}{3}+\frac{13}{5}\right)-\frac{20}{3}\)
\(B=\frac{23}{3}+\frac{13}{5}-\frac{20}{3}\)
\(B=\left(\frac{23}{3}-\frac{20}{3}\right)+\frac{13}{5}\)
\(B=1+\frac{13}{5}\)
\(B=\frac{18}{5}\)
Các bn ơi giải hộ mik với. Ai giải đầu mik sẽ k cho. Cảm ơn các bn nhiều nha.
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)