Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x\left(x+2\right)-3x-6=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x-3\right)\left(x+2\right)=0\)
=>\(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b)\(x^3+3x^2+3x-1-3x^2-3x=0\)
=>\(x^3-1=0\)
=>x3=1
=>x=1
3x2 + 3x - 5( x + 1 ) = 0
<=> ( 3x2 + 3x ) - 5( x + 1 ) = 0
<=> 3x( x + 1 ) - 5( x + 1 ) = 0
<=> ( x + 1 )( 3x - 5 ) = 0
<=> x + 1 = 0 hoặc 3x - 5 = 0
<=> x = -1 hoặc x = 5/3
\(\left|2x-3\right|-4x-9=0\)
<=> \(\left|2x-3\right|=4x+9\)
<=> \(\orbr{\begin{cases}2x-3=4x+9\left(x\ge\frac{3}{2}\right)\\3-2x=4x+9\left(x< \frac{3}{2}\right)\end{cases}}\) <=> \(\orbr{\begin{cases}2x=-12\\6x=-6\end{cases}}\) <=> \(\orbr{\begin{cases}x=-6\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)
\(\left(x+1\right)^2-\left|5-3x\right|-x=x\left(x+2\right)+4\)
<=> \(\left|5-3x\right|=x^2+2x+1-x-x^2-2x-4\)
<=> \(\left|5-3x\right|=-x-3\)
<=> \(\orbr{\begin{cases}5-3x=-x-3\left(x\le\frac{5}{3}\right)\\5-3x=x+3\left(x>\frac{5}{3}\right)\end{cases}}\) <=> \(\orbr{\begin{cases}2x=8\\4x=2\end{cases}}\) <=> \(\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{2}\left(ktm\right)\end{cases}}\)
=> pt vô nghiệm
a) \(ĐKXĐ:\hept{\begin{cases}x\ne3\\x\ne\pm2\end{cases}}\)
b) \(D=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right)\div\left(\frac{x-3}{2-x}\right)\)
\(\Leftrightarrow D=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2-x}{x-3}\)
\(\Leftrightarrow D=\frac{4+4x+x^2-4+4x-x^2+4x^2}{\left(2+x\right)\left(x-3\right)}\)
\(\Leftrightarrow D=\frac{4x^2+8x}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow D=\frac{4x}{x-3}\)
c) Để D = 0
\(\Leftrightarrow\frac{4x}{x-3}=0\)
\(\Leftrightarrow4x=0\)
\(\Leftrightarrow x=0\)
Vậy để D = 0 \(\Leftrightarrow\)x = 0
d) Khi \(\left|2x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5\\1-2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=-2\left(ktm\right)\end{cases}}\)
Vậy khi \(\left|2x-1\right|=5\Leftrightarrow D\in\varnothing\)
\(\Leftrightarrow6x^2-14x+4-6x^2-12x+18-7x+3=0\)
\(\Leftrightarrow-33x=-25\Rightarrow x=\frac{25}{33}\)
2( 3x - 1 )( x - 2 ) - 6( x - 1 )( x + 3 ) = 7x - 3
<=> 2( 3x2 - 7x + 2 ) - 6( x2 + 2x - 3 ) = 7x - 3
<=> 6x2 - 14x + 4 - 6x2 - 12x + 18 = 7x - 3
<=> -26x + 22 = 7x - 3
<=> -26x - 7x = -3 - 22
<=> -33x = -25
<=> x = 25/33
<=> -36x =
\(3x^2+3x-5=0\)
Ta có: \(\Delta=3^2+4.3.5=69,\sqrt{\Delta}=\sqrt{69}\)
\(\Rightarrow\orbr{\begin{cases}x_1=\frac{-3+\sqrt{69}}{6}\\x_2=\frac{-3-\sqrt{69}}{6}\end{cases}}\)
Giải tiêu biểu câu a nhé.
a/ \(5x\left(2x-7\right)+2x\left(8-5x\right)=5\)
\(\Leftrightarrow19x+5=0\)
\(\Leftrightarrow x=-\frac{5}{19}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\left(3x-1\right)^2.\left(x+5\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
Bạn làm đầy đủ hơn được không ạ?