Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)
\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\dfrac{5}{\sqrt{3}-2\sqrt{2}}-\dfrac{5}{\sqrt{3}+\sqrt{8}}=\sqrt{\sqrt{3}^2+2\sqrt{3}.1+1^2}+\sqrt{\sqrt{3}^2-2\sqrt{3}.1+1^2}-\dfrac{5\left(\sqrt{3}+2\sqrt{2}\right)}{\left(\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{3}+2\sqrt{2}\right)}-\dfrac{5\left(\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}-\dfrac{5\sqrt{3}+10\sqrt{2}}{9-8}-\dfrac{5\sqrt{3}-10\sqrt{2}}{9-8}=\sqrt{3}+1+\sqrt{3}-1-5\sqrt{3}-10\sqrt{2}-5\sqrt{3}+10\sqrt{2}=-8\sqrt{3}\)\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)
Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=21\cdot\left[2+\sqrt{3}+3-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right]-6\cdot\left[2-\sqrt{3}+3+\sqrt{5}+2\cdot\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right]-15\sqrt{15}\)
\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{\left(4+2\sqrt{3}\right)\left(6-2\sqrt{5}\right)}\right)-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{5}\right)}\right]-15\sqrt{15}\)
\(=21\cdot\left[5+\sqrt{3}-\sqrt{5}+\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\right]-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)\right]-15\sqrt{15}\)
\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{15}-\sqrt{3}+\sqrt{5}-1\right)-6\cdot\left(5-\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt{3}-\sqrt{5}-1\right)-15\sqrt{15}\)
\(=21\cdot\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)
\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)
\(=60\)
\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(=1-\sqrt{3}-\sqrt{3}-2\)
\(=-2\sqrt{3}-1\)
\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+4-2\sqrt{3}\)
\(=6-3\sqrt{3}\)
1/ \(A=\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\) (Vì \(\sqrt{5}-\sqrt{3}>0\))
\(B=\sqrt{6+2\sqrt{5}}-\sqrt{13}+\sqrt{48}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{13}+4\sqrt{3}=\left|\sqrt{5}+1\right|-\sqrt{13}+4\sqrt{3}=\sqrt{5}+1+\sqrt{13}+4\sqrt{5}\)
2/Ta có :
\(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}\)
\(=\left(\frac{3\sqrt{2}}{3\sqrt{3}-3}-\frac{5\sqrt{6}}{3}\right).\frac{1}{\sqrt{6}}\)
\(=\left(\frac{3\sqrt{2}}{3\left(\sqrt{3}-1\right)}-\frac{5\sqrt{6}\left(\sqrt{3}-1\right)}{3\left(\sqrt{3}-1\right)}\right).\frac{1}{\sqrt{6}}\)
\(=\frac{3\sqrt{2}-15\sqrt{2}+5\sqrt{6}}{3\left(\sqrt{3}-1\right)}.\frac{1}{\sqrt{6}}\)
\(=\frac{-12\sqrt{2}+5\sqrt{6}}{3\left(\sqrt{3}-1\right)}.\frac{1}{\sqrt{6}}\)
\(=\frac{-7+\sqrt{3}}{6}\)
Vậy...
Bài 1:
Ta có: \(A=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}+\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}-2\cdot\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left|\sqrt{5}+\sqrt{3}\right|+\left|\sqrt{5}-\sqrt{3}\right|-2\cdot\left|\sqrt{5}-1\right|\)
\(=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2\)
=2
Vậy: A=2
Bài 2: Sửa đề: Chứng minh \(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right)\cdot\frac{1}{\sqrt{6}}=\frac{-7+\sqrt{3}}{6}\)
Ta có: \(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{9\sqrt{2}}{3\left(\sqrt{27}-3\right)}-\frac{\sqrt{150}\left(\sqrt{27}-3\right)}{3\cdot\left(\sqrt{27}-3\right)}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{9\sqrt{2}-45\sqrt{2}+3\sqrt{150}}{9\left(\sqrt{3}-1\right)}\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{-36\sqrt{2}+3\sqrt{150}}{9\sqrt{6}\cdot\left(\sqrt{3}-1\right)}\)
\(=\frac{\sqrt{54}\cdot\left(5-4\sqrt{3}\right)}{\sqrt{486}\cdot\left(\sqrt{3}-1\right)}\)
\(=\frac{5-4\sqrt{3}}{3\sqrt{3}-3}\)
\(=\frac{-7+\sqrt{3}}{6}\)(đpcm)
\(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(\Rightarrow\)\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1+\sqrt{3}-1\)
\(=2\sqrt{3}\)
\(\Rightarrow\)\(A=\sqrt{6}\) (đpcm)
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
\(VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(=\sqrt{\frac{2\left(2+\sqrt{3}\right)}{2}}+\sqrt{\frac{2\left(2-\sqrt{3}\right)}{2}}\)
\(=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\)
\(=\sqrt{\frac{3+2\sqrt{3}+1}{2}}+\sqrt{\frac{3-2\sqrt{3}+1}{2}}\)
\(=\sqrt{\frac{\left(\sqrt{3}+\sqrt{1}\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-\sqrt{1}\right)^2}{2}}\)
\(=\frac{\left|\sqrt{3}+\sqrt{1}\right|+|\sqrt{3}-\sqrt{1}|}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+\sqrt{1}+\sqrt{3}-\sqrt{1}}{\sqrt{2}}\)
\(=\frac{2\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{12}}{\sqrt{2}}=\sqrt{6}\)
\(=VP\)
Vậy đẳng thức được chứng minh .
\(\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6+\sqrt{2}}\right)}=2\)
=2.
\(a,x-3\sqrt{x}+2\)
\(=x-3\sqrt{x}+\frac{9}{4}-\frac{1}{4}\)
\(=\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2=\left(x+2\right)\left(x-2\right)\)
câu a mình nhìn nhầm :
\(=\left(x-1\right)\left(x+2\right)\)
\(\left(3\sqrt{12}-4\sqrt{3}+\sqrt{15}\right)\cdot\sqrt{3}-2\sqrt{5}\)
\(=\left(6\sqrt{3}-4\sqrt{3}+\sqrt{15}\right)\cdot\sqrt{3}-2\sqrt{5}\)
\(=6+3\sqrt{5}-2\sqrt{5}=6+\sqrt{5}\)
(3\(\sqrt{12}\)-4\(\sqrt{3}\)+\(\sqrt{15}\)).\(\sqrt{3}\)-2\(\sqrt{5}\)
=\(\left(6\sqrt{3}-4\sqrt{3}+\sqrt{15}\right).\sqrt{3}-2\sqrt{5}\)
=\(\left(2\sqrt{3}+\sqrt{15}\right).\sqrt{3}-2\sqrt{5}\)
=\(6+\sqrt{45}-2\sqrt{5}\)
=\(6+3\sqrt{5}-2\sqrt{5}\)
=\(6+\sqrt{5}\)