Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là j, chứng minh hay tìm n để thỏa mãn ddieuf kiện j đó hả b
3n + 5 ⋮ 2n + 1
(3n + 5).2 ⋮ 2n + 1
6n + 10 ⋮ 2n + 1
3.(2n + 1) + 7 ⋮ 2n + 1
2n + 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
Lập bảng ta có:
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 |
3 |
Theo bảng trên ta có
n \(\in\) {-4; -1; 0; 3}
Gọi b là ước nguyên tố của \(\frac{2n-1}{3n+2}\)
\(2n-1 \vdots b\)
\(3n+2 \vdots b\)
\(=> 6n - 3 \vdots b\)
\(=> 6n + 4 \vdots b\)
\(=> (6n+4) -(6n-3) \vdots b = 6n - 4 - 6n-3 = 7 \vdots b\)
\(b\) là nguyên tố nên \(b=7\)
Ta có : \(3n + 2\vdots 7 => (3n+2-14) \vdots 7 => (3n - 12)\vdots 7 = (3n - 3.4)\vdots 7 = 3(n-4) \vdots 7\)
\(=> n-4 \vdots 7\)
\(=> n-4 = 7k => n = 7k + 4\)
Vậy để a là phân số tối giản \(n = 7k + 4\)
Chắc olm lỗi nên có 1 phần bị khuất mình viết lại vào nhé
Ta có :
2n - 1 chia hết cho b
3n + 2 chia hết cho b
=> 6n - 3 chia hết cho b
=> 6n + 4 chia hết cho b
=> 6n + 4 - (6n - 3) = 6n + 4 - 6n + 3 = 7 chia hết cho b
Vì b là nguyên tố nên b = 7
Ta có :
3n + 2 chia hết cho 7 => 3n + 2 - 14 = 3n - 12 chia hết cho 7 ( hai số chia hết cho 7 thì hiệu chúng chia hết cho 7)
3n - 12 = 3n - 3.4 = 3.(n-4) chia hết cho 7 ( tính chất phân phối của phép nhân)
=> n - 4 chia hết cho 7
=> n - 4 = 7.k
n = 7k + 4
Vậy để a là phân số tối giản thì n = 7k + 4
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
3n+1 chia hết cho 11-2n
=>6n+2 chia hết cho 11-2n
3(11-2n)=33-6n chia hết cho 11-2n
=>6n+2 +(33-6n) chia hết cho 11-2n
=> 35 chia hết cho 11-2n
=> 11-2n \(\in\)Ư(35)={1;-1;5;-5;7;-7;35;-35}
=>2n \(\in\){10;12;6;16;4;18;-24;46}
=>n \(\in\){5;6;3;8;2;9;23} (vì\(\in\)N)
Mình kh btt đúng hay sai:
Ta có: - 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n.
- 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n.
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35.
* Với 11-2n=-1 => n=6
* Với 11-2n=1 => n=5
* Với 11-2n=-5 => n=8
* Với 11-2n=5 => n=3
* Với 11-2n=-7 =>n=9
* Với 11-2n=7 => n=2
* Với 11-2n=-35 => n=23
* Với 11-2n=35 => n=-12
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n