Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}\)
\(S=\frac{1}{2}\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\right)\)
\(S=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(S=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(S=\frac{1}{2}\cdot\frac{32}{99}\)
\(S=\frac{16}{99}\)
\(=4\left(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{53.55}\right)\)
\(=4\left(\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(=4\left(\frac{1}{5}-\frac{1}{55}\right)\)
\(=4.\frac{2}{11}\)
\(=\frac{8}{11}\)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)
\(=\left(\frac{2}{2}+\frac{1}{2}\right)\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{4}{4}+\frac{1}{4}\right).....\left(\frac{99}{99}+\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{3.4.5....100}{2.3.4....99}=\frac{100}{2}=50\)
\(j,\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{53.55}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{53}-\dfrac{1}{55}=\dfrac{1}{5}-\dfrac{1}{55}=\dfrac{11}{55}-\dfrac{1}{55}=\dfrac{10}{55}=\dfrac{2}{11}\\ k,\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}=\dfrac{1}{100}.\dfrac{2}{2}.\dfrac{3}{3}...\dfrac{99}{99}=\dfrac{1}{100}.1.1...1=\dfrac{1}{100}\)
Ta có:
\(\dfrac{2}{5.7}=\dfrac{7-5}{5.7}=\dfrac{1}{5}-\dfrac{1}{7}\)
\(\dfrac{2}{7.9}=\dfrac{9-7}{7.9}=\dfrac{1}{7}-\dfrac{1}{9}\)
..........
\(\dfrac{2}{53.55}=\dfrac{55-53}{53.55}=\dfrac{1}{53}-\dfrac{1}{55}\)
\(\Rightarrow\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{53.55}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{5}+...+\dfrac{1}{53}-\dfrac{1}{55}=\dfrac{1}{5}-\dfrac{1}{55}=\dfrac{10}{55}=\dfrac{2}{11}\)
\(=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{53}-\dfrac{1}{55}=\dfrac{1}{5}-\dfrac{1}{55}=\dfrac{2}{11}\)
Ta có :
\(A=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+............+\frac{2}{53.55}\right)\)
\(\Rightarrow A=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+..............+\frac{1}{53}-\frac{1}{55}\right)\)
\(\Rightarrow A=2.\left(\frac{1}{5}-\frac{1}{55}\right)=2.\frac{2}{11}=\frac{4}{11}\)
k nha bạn !!!
\(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{31.33}+\frac{2}{33.35}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{31}-\frac{1}{33}+\frac{1}{33}-\frac{1}{35}\)
\(=\frac{1}{5}-\frac{1}{35}\)
\(=\frac{6}{35}\)
Chúc bạn học giỏi nha!!!
K cho mik vs nhé danggiahuy
đặt A=2/5.7+2/7.9+2/9.11+.....+2/31.33+2/33.35
A=1/5-1/7+1/7-1/9+1/9-1/11+.....+1/31-1/33+1/33-1/35
A=1/5-1/35
A=6/35
\(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{201.203}\)
\(=\frac{1}{2}.2.\left(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{201.203}\right)\)
\(=\frac{1}{2}.2.3.\left(\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{201.203}\right)\)
\(=\left(\frac{1}{2}.3\right).2.\left(\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{201.203}\right)\)
\(=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{201.203}\right)\)
Vì muốn chuyển 3/5.7 = 1/5 - 1 /7 thì tử số phải bằng hiệu của mẫu số nên 3/5.7= 3/5.7 chia 2/5.7 = 3/2 . 2/5.7 các phân số khác cũng tương tự như thế
nên ta có 3/5.7 +3/7.9 +...3/201.203 = 3/2. (2/5.7+2/7.9+...+2/201.203)
= 3/2.( 1/5.7 + 1/7.9 +.....+ 1/53.55 )
= 3/2.( 1/5 - 1/7 + 1/7 - 1/9 +......+ 1/53 - 1/55 )
= 3/2.( 1/5 - 1/55 )
= 3/2.( 11/55 - 1/55 )
= 3/2. 10/55
= 3/2 . 2/11
= 3/11
tk mk nha
bài này mk biết , chỉ cần bạn lấy 3 ra và thêm 2 vào