K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

Ta có : 

\(A=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+............+\frac{2}{53.55}\right)\)

\(\Rightarrow A=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+..............+\frac{1}{53}-\frac{1}{55}\right)\)

\(\Rightarrow A=2.\left(\frac{1}{5}-\frac{1}{55}\right)=2.\frac{2}{11}=\frac{4}{11}\)

k nha bạn !!!

3 tháng 4 2019

2\3x-780\11:[13\2.(1\3.5+1\5.7+1\7.9+1\9.11]=-5

2\3x-780\11:[13\2.(1\3-1\5+1\5-1\7+....+1\9-1\11)]=-5

2\3x-780\11:[13\2.(1\3-1\11)]=-5

2\3x-780\11:[13\2.8\33]=-5

2\3x-780\11:52\33=-5

2\3x-525\13=-5

2\3x=-5+525\13

2\3x=460\13

x=460\13:2\3

x=690\13

2 tháng 8 2015

a) \(2\frac{3}{13}-\frac{5}{9}-\left(\frac{3}{13}+\frac{4}{9}\right)\)

\(\frac{29}{13}-\frac{5}{9}-\left(\frac{3}{13}+\frac{4}{9}\right)\)

\(\left(\frac{29}{13}-\frac{3}{13}\right)-\left(\frac{5}{9}+\frac{4}{9}\right)\)

\(2-1\)

\(1\)

b) \(17\frac{4}{16}+\frac{3}{4}-\left(2\frac{3}{12}+75\%\right)\)

\(\frac{69}{4}+\frac{3}{4}-\left(\frac{27}{12}+\frac{3}{4}\right)\)

\(\left(\frac{69}{4}+\frac{3}{4}\right)-\left(\frac{27}{12}+\frac{3}{4}\right)\)

\(18-3\)

\(15\)

c) \(\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+....+\frac{6}{101.103}+\frac{6}{103.106}\)

\(3.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+....+\frac{2}{101.103}+\frac{2}{103.106}\right)\)

\(3.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{101}-\frac{1}{103}+\frac{1}{103}-\frac{1}{106}\right)\)

\(3.\left(\frac{1}{5}-\frac{1}{106}\right)\)

\(3.\frac{101}{530}\)

\(\frac{303}{530}\)

 

1 tháng 5 2015

\(=4\left(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{53.55}\right)\)

\(=4\left(\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{53}-\frac{1}{55}\right)\)

\(=4\left(\frac{1}{5}-\frac{1}{55}\right)\)

\(=4.\frac{2}{11}\)

\(=\frac{8}{11}\)

10 tháng 7 2018

Bài 1. 

b) \(\frac{5+55+555+5555}{9+99+999+9999}\)

\(\frac{5\left(1+11+111+1111\right)}{9\left(1+11+111+1111\right)}=\frac{5}{9}\)

c) \(39,2\cdot27+39,2\cdot43+78,4\cdot15\)

\(39,2\cdot27+39,2\cdot43+39,2\cdot2\cdot15\)

\(39,2\left(27+43+30\right)=39,2\cdot100=3920\)

d) \(\frac{4}{17}\cdot\frac{3}{11}+\frac{8}{11}\cdot\frac{4}{17}-\frac{4}{17}\)

\(\frac{4}{17}\left(\frac{3}{11}+\frac{8}{11}-1\right)=\frac{4}{17}\cdot0=0\)

Bài 2.

a) \(\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+...+\frac{1}{57\cdot59}\)

\(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{57}-\frac{1}{59}\)

\(\frac{1}{5}-\frac{1}{59}=\frac{54}{295}\)

b) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)-\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\)

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\)

\(\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

c) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2012}\right)\)

\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2011}{2012}=\frac{1}{2012}\)

10 tháng 5 2018

A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)

=3/2x4/3x...............x100/99

=2-1/99

=197/99

10 tháng 5 2018

A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)

A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)

A=\(\frac{100}{2}=50\)

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%

a.\(4\frac{3}{4}+\left(-0,37\right)+\frac{1}{8}+\left(-1,28\right)+\left(2,5\right)+3\frac{1}{12}\)

\(=\)\(\left(4\frac{3}{4}+\frac{1}{8}+3\frac{1}{12}\right)-\left(0,37+1,28+2,5\right)\)

\(=7\frac{23}{24}-4,15\)

\(=7\frac{23}{24}-4\frac{3}{20}\)

\(=3\frac{97}{120}\)

b.\(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)

\(=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...\frac{1}{59}-\frac{1}{61}\right)\)

\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)

\(=\frac{3}{2}.\frac{56}{305}\)

\(=\frac{84}{305}\)

c.\(\frac{\frac{5}{22}+\frac{3}{13}-\frac{1}{2}}{\frac{4}{13}-\frac{2}{11}+\frac{3}{2}}\)

\(=\frac{\left(\frac{5}{22}+\frac{3}{13}-\frac{1}{2}\right).\left(2.11.13\right)}{\left(\frac{4}{13}-\frac{2}{11}+\frac{3}{2}\right).\left(2.11.13\right)}\)

\(=\frac{65+66-143}{88-52+429}\)

\(=\frac{-12}{465}=\frac{-4}{155}\)