K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2021

Trả lời:

Ta có: \(\frac{3}{2x}=\frac{4}{5y}=\frac{6}{7z}\)

\(\Rightarrow\frac{3}{2x}.70=\frac{4}{5y}.70=\frac{6}{7z}.70\)

\(\Rightarrow\frac{105}{x}=\frac{56}{y}=\frac{60}{z}\)

\(\Rightarrow\frac{x}{105}=\frac{y}{56}=\frac{z}{60}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{105}=\frac{y}{56}=\frac{z}{60}=\frac{x-y-2z}{105-56-2.60}=\frac{-45}{-71}=\frac{45}{71}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{4725}{71}\\y=\frac{2520}{71}\\z=\frac{2700}{71}\end{cases}}\)

AH
Akai Haruma
Giáo viên
23 tháng 6 2021

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{3x}{2}=\frac{4y}{5}=\frac{6z}{7}$

$\Rightarrow \frac{x}{\frac{2}{3}}=\frac{y}{\frac{5}{4}}=\frac{2z}{\frac{7}{3}}$

$=\frac{x-y-2z}{\frac{2}{3}-\frac{5}{4}-\frac{7}{3}}=\frac{-45}{\frac{-35}{12}}=\frac{108}{7}$

$\Rightarrow x=\frac{108}{7}.\frac{2}{3}=\frac{72}{7};y=\frac{135}{7}; z=18$

31 tháng 10 2021

Cho em hỏi là tính như nào ra được \(\dfrac{\text{108}}{\text{7}}\) vậy ạ?

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)

Ta có: \(x^2-y^2+2z^2=108\)

\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)

\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)

Trường hợp 2: k=-2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

25 tháng 6 2018

f ) x + y = x . y = x : y

Ta có :

\(x+y=xy\Rightarrow x=xy-y=y\cdot\left(x-1\right)\\ \Rightarrow x:y=x-1\)

Mặt khác , x : y = x + y ( gt )

\(\Rightarrow x-1=x+y\\ \Rightarrow x-x=1+y\\ \Rightarrow1+y=0\\ \Rightarrow y=-1\)

\(+)x=\left(x-1\right)\cdot y\\ \Rightarrow x=\left(x-1\right)\cdot\left(-1\right)\\ \Rightarrow x=-x+1\\ \Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

Vậy x = \(\dfrac{1}{2},y=-1\)

a; Ta có: 2x=3y

nên x/3=y/2

=>x/21=y/14

Ta có: 5y=7z

nên y/7=z/5

=>y/14=z/10

=>x/21=y/14=z/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{15}=2\)

Do đó: x=42; y=28; z=20

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{-x+y+z}{-\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-120}{-\dfrac{4}{3}}=90\)

Do đó: x=165; y=20; z=25

c: x/3=y/4

nên x/15=y/20

y/5=z/7

nên y/20=z/28

=>x/15=y/20=z/28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)

Do đó: x=30; y=40; z=56

16 tháng 10 2016

Đặt \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=k\Rightarrow\begin{cases}x=10k\\y=15k\\z=21k\end{cases}\)

Ta có:

\(\frac{3x-y+2z}{2x+5y-7z}=\frac{3.10k-15k+2.21k}{2.10k+5.15k-7.21k}=\frac{30k-15k+42k}{20k+75k-147k}=\frac{57k}{-52k}=\frac{-57}{52}\)

Vậy \(\frac{3x-y+2z}{2x+5y-7z}=\frac{-57}{52}\)

16 tháng 10 2016

cần j đặt thay luôn vào tính cho sướng não

6 tháng 1 2017

A=5x-6y và y=-2x

9 tháng 7 2015

nhiều quá không ai làm đâu

17 tháng 8 2016

\(\Rightarrow\frac{5x}{5.10}=\frac{y}{6}=\frac{2z}{2.21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

\(\Rightarrow\frac{5x}{50}+\frac{y}{6}-\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\Rightarrow x=2.10=20\)

\(y=2.6=12\)

\(z=2.21=41\)