Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
a) Ta có:
\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\)
\(=\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\\\dfrac{y}{6}=2\\\dfrac{z}{21}=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\)
b) Ta có:
\(2x=3y\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\)
\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\left(1\right)\)
Ta lại có:
\(5y=7z\)
\(\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
\(=\dfrac{3x}{63}=\dfrac{5y}{70}=\dfrac{7z}{70}=\dfrac{3x+5y-7z}{63+70-70}=\dfrac{30}{63}=\dfrac{10}{21}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=\dfrac{10}{21}\\\dfrac{y}{14}=\dfrac{10}{21}\\\dfrac{z}{10}=\dfrac{10}{21}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=\dfrac{20}{3}\\z=\dfrac{100}{21}\end{matrix}\right.\)
a, \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\&5x+y-2z=28\)
\(\Rightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\\\dfrac{y}{6}=2\\\dfrac{z}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\)
b, \(2x=3y;5y=7z\&3x+5y-7z=30\)
Ta có: \(\left\{{}\begin{matrix}2x=3y\\5y=7z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{7}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=\dfrac{y}{14}\\\dfrac{y}{14}=\dfrac{z}{10}\end{matrix}\right.\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
\(\Rightarrow\dfrac{3x}{63}=\dfrac{5y}{70}=\dfrac{7z}{70}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{3x}{63}=\dfrac{5y}{70}=\dfrac{7z}{70}=\dfrac{3x+5y-7z}{63+70-70}=\dfrac{30}{63}=\dfrac{10}{21}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=\dfrac{10}{21}\\\dfrac{y}{14}=\dfrac{10}{21}\\\dfrac{z}{10}=\dfrac{10}{21}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\y=\dfrac{20}{3}\\z=\dfrac{100}{21}\end{matrix}\right.\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
f ) x + y = x . y = x : y
Ta có :
\(x+y=xy\Rightarrow x=xy-y=y\cdot\left(x-1\right)\\ \Rightarrow x:y=x-1\)
Mặt khác , x : y = x + y ( gt )
\(\Rightarrow x-1=x+y\\ \Rightarrow x-x=1+y\\ \Rightarrow1+y=0\\ \Rightarrow y=-1\)
\(+)x=\left(x-1\right)\cdot y\\ \Rightarrow x=\left(x-1\right)\cdot\left(-1\right)\\ \Rightarrow x=-x+1\\ \Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)
Vậy x = \(\dfrac{1}{2},y=-1\)
Ta có:
x5=y6⇒x20=y24x5=y6⇒x20=y24 (1)(1)
y8=z7=y24=z21y8=z7=y24=z21 (2)(2)
Từ (1)(1) và (2)(2) ⇒x20=y24=z21⇒x20=y24=z21
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x20=y24=z21=x+y−z20+24−21=6923=3x20=y24=z21=x+y-z20+24-21=6923=3
⇒⎧⎪⎨⎪⎩x=60y=72z=63⇒{x=60y=72z=63
Vậy x=60;y=72x=60;y=72 và z=63
minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z
+) 10x=15y=21z ( Quy dong)
+)10x/210 = 15y/210 = 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( Rut gon)
+) 3x/63 = 7y/98 = 5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2
+ x/21 = 2 => ............ phan nay minh chua xong neu xong thi minh pm not cho
Đặt \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=k\Rightarrow\begin{cases}x=10k\\y=15k\\z=21k\end{cases}\)
Ta có:
\(\frac{3x-y+2z}{2x+5y-7z}=\frac{3.10k-15k+2.21k}{2.10k+5.15k-7.21k}=\frac{30k-15k+42k}{20k+75k-147k}=\frac{57k}{-52k}=\frac{-57}{52}\)
Vậy \(\frac{3x-y+2z}{2x+5y-7z}=\frac{-57}{52}\)
cần j đặt thay luôn vào tính cho sướng não