K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2024

\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{2021.2022}\)

\(=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2021.2022}\right)\)

\(=3.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\right)\)

\(=3.\left(1-\dfrac{1}{2022}\right)\)

\(=\dfrac{2021}{674}\)

2 tháng 8 2016

\(\frac{3}{1.2}+\frac{3}{2.3}+........+\frac{3}{99.100}\)

\(=3\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\right)\)

\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{99}-\frac{1}{100}\right)\)

\(=3\left(1-\frac{1}{100}\right)\)

\(=\frac{3.99}{100}=\frac{297}{100}\)

20 tháng 2 2018

(1-1/2)(1-1/3)(1-1/4)….(1-1/2002).x=1-1/1x2-1/2x3-1/3x4-...1/2002x2003 ae ghi lời giải jup mình nhé. Tìm x

20 tháng 2 2018

Gọi \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2002}\right).x\)

\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}....\frac{2001}{2002}.x=\frac{x}{2002}\)

Gọi \(B=1-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{2002.2003}\)

=>\(B=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\right)\)

\(\Rightarrow B=1-\left(1-\frac{1}{2003}\right)=1-\frac{2002}{2003}=\frac{1}{2003}\)

\(\Rightarrow\frac{x}{2002}=\frac{1}{2003}\Rightarrow x=\frac{2002}{2003}\)

18 tháng 7 2016

c) 

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)

   \(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)

   \(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)

   \(=\frac{1}{2}.\frac{20}{21}\)

   \(=\frac{10}{21}\)

18 tháng 7 2016

\(A\)\(\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}=\)\(\frac{1}{3}-\frac{1}{50}=\frac{50}{150}-\frac{3}{150}=\frac{47}{150}\)

30 tháng 10 2023

A = 1.2 + 2.3 + 3.4 + ... + 2017.2018

⇒ 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2017.218.(2019 - 2016)

= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2017.2018.2019 - 2016.2017.2018

= 2017.2018.2019

= 2017.2018.2019

B = 2018³/3 ⇒ 3B = 2018³

Ta có:

2017.2019 = (2018 - 1).(2018 + 1)

= 2018² - 1²

= 2018.2018 - 1 < 2018.2018

⇒ 2017.2018.2019 < 2018.2018.2018

⇒ 3A < 3B

⇒ A < B

15 tháng 7 2023

\(\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{19\cdot20}\)

\(=2\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)

\(=2\cdot\left(1-\dfrac{1}{20}\right)\)

\(=2\cdot\dfrac{19}{20}\)

\(=\dfrac{19}{10}\)

37 phút trước

Câu 1: So sánh Biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) 3(a+1)(a+2) Bước 1: Rút gọn biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Ta có thể khai triển từng phần: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) = ( 𝑎 + 1 ) ( 𝑎 2 + 5 𝑎 + 6 ) = 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 (a+1)(a+2)(a+3)=(a+1)(a 2 +5a+6)=a 3 +6a 2 +11a+6 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 𝑎 ( 𝑎 2 + 3 𝑎 + 2 ) = 𝑎 3 + 3 𝑎 2 + 2 𝑎 a(a+1)(a+2)=a(a 2 +3a+2)=a 3 +3a 2 +2a Vậy biểu thức 1 trở thành: ( 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 ) − ( 𝑎 3 + 3 𝑎 2 + 2 𝑎 ) = 3 𝑎 2 + 9 𝑎 + 6 (a 3 +6a 2 +11a+6)−(a 3 +3a 2 +2a)=3a 2 +9a+6 Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 3 ( 𝑎 2 + 3 𝑎 + 2 ) = 3 𝑎 2 + 9 𝑎 + 6 3(a+1)(a+2)=3(a 2 +3a+2)=3a 2 +9a+6 Như vậy, biểu thức 1 và biểu thức 2 đều có giá trị bằng nhau. Do đó, cả hai biểu thức bằng nhau. Câu 2: Tính M Biểu thức: 𝑀 = 1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 2002 × 2003 M=1×2+2×3+3×4+⋯+2002×2003 Bước 1: Viết lại tổng: 𝑀 = ∑ 𝑘 = 1 2002 𝑘 ( 𝑘 + 1 ) M= k=1 ∑ 2002 ​ k(k+1) Bước 2: Rút gọn 𝑘 ( 𝑘 + 1 ) k(k+1): 𝑘 ( 𝑘 + 1 ) = 𝑘 2 + 𝑘 k(k+1)=k 2 +k Do đó: 𝑀 = ∑ 𝑘 = 1 2002 ( 𝑘 2 + 𝑘 ) = ∑ 𝑘 = 1 2002 𝑘 2 + ∑ 𝑘 = 1 2002 𝑘 M= k=1 ∑ 2002 ​ (k 2 +k)= k=1 ∑ 2002 ​ k 2 + k=1 ∑ 2002 ​ k Bước 3: Tính từng tổng: Tổng ∑ 𝑘 = 1 2002 𝑘 2 ∑ k=1 2002 ​ k 2 là tổng bình phương của các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 2 = 𝑛 ( 𝑛 + 1 ) ( 2 𝑛 + 1 ) 6 k=1 ∑ n ​ k 2 = 6 n(n+1)(2n+1) ​ Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 2 = 2002 ( 2002 + 1 ) ( 2 × 2002 + 1 ) 6 = 2002 × 2003 × 4005 6 k=1 ∑ 2002 ​ k 2 = 6 2002(2002+1)(2×2002+1) ​ = 6 2002×2003×4005 ​ Tổng ∑ 𝑘 = 1 2002 𝑘 ∑ k=1 2002 ​ k là tổng các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 = 𝑛 ( 𝑛 + 1 ) 2 k=1 ∑ n ​ k= 2 n(n+1) ​ Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 = 2002 ( 2002 + 1 ) 2 = 2002 × 2003 2 k=1 ∑ 2002 ​ k= 2 2002(2002+1) ​ = 2 2002×2003 ​ Bước 4: Tính tổng 𝑀 M: 𝑀 = 2002 × 2003 × 4005 6 + 2002 × 2003 2 M= 6 2002×2003×4005 ​ + 2 2002×2003 ​ Rút gọn biểu thức: 𝑀 = 2002 × 2003 ( 4005 6 + 1 2 ) M=2002×2003( 6 4005 ​ + 2 1 ​ ) Tính phần trong dấu ngoặc: 4005 6 + 1 2 = 4005 + 3 6 = 4008 6 = 668 6 4005 ​ + 2 1 ​ = 6 4005+3 ​ = 6 4008 ​ =668 Vậy: 𝑀 = 2002 × 2003 × 668 M=2002×2003×668 Đây là kết quả của phép tính 𝑀 M.

30 tháng 6 2015

\(b=1.1+2.2+...+98.98=1\left(2-1\right)+2\left(3-1\right)+..+98.\left(99-1\right)=\left(1.2+2.3+...+98.99\right)-\left(1+2+...+98\right)\)=> \(a-b=\left(1.2+2.3+..+98.99\right)-\left[\left(1.2+2.3+...+98.99\right)-\left(1+2+...+98\right)\right]=1+2+3+...+98\)ta tính tổng của dãy số: a-b= (98+1).98:2=4851

30 tháng 6 2015

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300

B = ... (bạn tự tính)

=> A - B = ...

2 tháng 7 2016

làm ơn hãy giúp mình

4 tháng 6 2021

A=12/1.2 .22/2.3 .32/3.4 .42/4.5

=1/2. 2.2/2.3 .3.3/3.4 .4.4/4.5

=1/2.2/3.3.4.4./5

=1/5

22 tháng 10 2016

\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(S=1-\frac{1}{2011}\)

\(S=\frac{2010}{2011}\)

22 tháng 10 2016

=1+2x2+3x3+4x...x2010+2011 =1x2+2x3+3x4+...+2010x2011 =1x2011 =2011