Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow OC\) là phân giác \(\widehat{AOM},CM=CA\)
Tương tự \(OD\) là phân giác \(\widehat{BOM},DM=DB\)
\(\Rightarrow AC+BD=CM+DM=CD\)
b . Từ câu a )
\(\Rightarrow\widehat{COD}=\widehat{COM}+\widehat{MOD}=\frac{1}{2}\widehat{AOM}+\frac{1}{2}\widehat{MOB}=\frac{1}{2}\widehat{AOB}=90^0\)
c . Ta có :
\(OC\perp OD,OM\perp CD\Rightarrow CM.DM=OM^2\)
Mà \(AC=CM,DM=DB,OM=R\Rightarrow AC.BD=R^2=\frac{AB^2}{4}\)
d.Vì CA,CM là tiếp tuyến của (O)
\(\Rightarrow OC\perp AM\)
Mà \(AM\perp BM\) vì AB là đường kính của (O)
=> oc//bm
e . Lấy I là trung điểm CD vì \(\widehat{COD}=90^0\) \(\Rightarrow\left(I,IO\right)\)là đường tròn đường kính CD
Mà O là trung điểm AB,AC //DB \(\left(\perp AB\right)\)
=> IO là đường trung bình hình thang ◊ABDC
=> IO//AC \(\Rightarrow IO\perp AB\)
=> AB là tiếp tuyến của (I,IO)
Hay AB là tiếp tuyến của đường tròn đường kính CD
f ) Ta có : \(AC//BD,CM=CA,DM=DA\)
\(\Rightarrow\frac{NA}{ND}=\frac{AC}{BD}=\frac{CM}{MD}\)
\(\Rightarrow MN//AC\Rightarrow MN\perp AB\left(AC\perp AB\right)\)
g ) .Để ABDC có chu vi nhỏ nhất
\(\Rightarrow AB+BD+AC+CD\) nhỏ nhất
\(\Rightarrow AB+CD+CD\)nhỏ nhất
\(\Rightarrow AB+2CD\)nhỏ nhất
\(\Rightarrow CD\) nhỏ nhất
Mà \(CD\ge AB\) vì ABCD là hình thang vuông tại A,B
Dấu " = " xảy ra khi CD//AB => M nằm giữa A và B
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)
Ta có: MC+MD=CD
nên CD=CA+DB
b: Xét ΔCOD vuông tại O có OM là đường cao
nên \(CM\cdot DM=OM^2=R^2\)
hay \(AC\cdot BD=R^2\)