K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

Giups câu f, thôi

29 tháng 4 2020

a.Vì CM,CA là tiếp tuyến của (O)

\(\Rightarrow OC\) là phân giác \(\widehat{AOM},CM=CA\)

Tương tự \(OD\) là phân giác \(\widehat{BOM},DM=DB\)

\(\Rightarrow AC+BD=CM+DM=CD\)

b . Từ câu a ) 

\(\Rightarrow\widehat{COD}=\widehat{COM}+\widehat{MOD}=\frac{1}{2}\widehat{AOM}+\frac{1}{2}\widehat{MOB}=\frac{1}{2}\widehat{AOB}=90^0\)

c . Ta có : 

\(OC\perp OD,OM\perp CD\Rightarrow CM.DM=OM^2\)

Mà \(AC=CM,DM=DB,OM=R\Rightarrow AC.BD=R^2=\frac{AB^2}{4}\)

d.Vì CA,CM là tiếp tuyến của (O)

\(\Rightarrow OC\perp AM\)

Mà \(AM\perp BM\) vì AB là đường kính của (O)

=> oc//bm 

e . Lấy I là trung điểm CD vì \(\widehat{COD}=90^0\) \(\Rightarrow\left(I,IO\right)\)là đường tròn đường kính CD

Mà O là trung điểm AB,AC //DB \(\left(\perp AB\right)\)

=> IO là đường trung bình hình thang ◊ABDC

=> IO//AC \(\Rightarrow IO\perp AB\)

=> AB  là tiếp tuyến của (I,IO)

Hay AB là tiếp tuyến của đường tròn đường kính CD

f ) Ta có : \(AC//BD,CM=CA,DM=DA\)

\(\Rightarrow\frac{NA}{ND}=\frac{AC}{BD}=\frac{CM}{MD}\)

\(\Rightarrow MN//AC\Rightarrow MN\perp AB\left(AC\perp AB\right)\)

g ) .Để ABDC có chu vi nhỏ nhất

\(\Rightarrow AB+BD+AC+CD\) nhỏ nhất 

\(\Rightarrow AB+CD+CD\)nhỏ nhất 

\(\Rightarrow AB+2CD\)nhỏ nhất

\(\Rightarrow CD\) nhỏ nhất

Mà \(CD\ge AB\) vì ABCD là hình thang vuông tại A,B

Dấu " = " xảy ra khi CD//AB => M  nằm giữa A và B

3 tháng 10 2021

bạn god rick giải dài nhưng chưa chắc là đúng

a) Xét tứ giác AOMC có

ˆCAOCAO^ và ˆCMOCMO^ là hai góc đối

ˆCAO+ˆCMO=1800(900+900=1800)CAO^+CMO^=1800(900+900=1800)

Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: AOMC là tứ giác nội tiếp(cmt)

nên ˆMAO=ˆOCMMAO^=OCM^(hai góc cùng nhìn cạnh OM)

hay ˆMAB=ˆOCDMAB^=OCD^

Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(Gt)

CA là tiếp tuyến có A là tiếp điểm(Gt)

Do đó: OC là tia phân giác của ˆAOMAOM^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆAOM=2⋅ˆCOM⇔AOM^=2⋅COM^

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của ˆMOBMOB^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆBOM=2⋅ˆMOD⇔BOM^=2⋅MOD^

Ta có: ˆAOM+ˆBOM=1800AOM^+BOM^=1800(hai góc kề bù) 

mà ˆAOM=2⋅ˆCOMAOM^=2⋅COM^(cmt)

và ˆBOM=2⋅ˆMODBOM^=2⋅MOD^(cmt)

nên 2⋅ˆCOM+2⋅ˆMOD=18002⋅COM^+2⋅MOD^=1800

⇔ˆCOM+ˆMOD=900⇔COM^+MOD^=900

mà ˆCOM+ˆMOD=ˆCODCOM^+MOD^=COD^(tia OM nằm giữa hai tia OC,OD)

nên ˆCOD=900COD^=900

Xét ΔCOD có ˆCOD=900COD^=900(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

Xét (O) có

ΔMAB nội tiếp đường tròn(M,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔMAB vuông tại M(Định lí)

Xét ΔAMB vuông tại M và ΔCOD vuông tại O có

ˆMAB=ˆOCDMAB^=OCD^(cmt)

Do đó: ΔAMB∼ΔCOD(g-g)

AMCO=BMDOAMCO=BMDO(Các cặp cạnh tương ứng tỉ lệ)

hay AM⋅OD=BM⋅OCAM⋅OD=BM⋅OC(đpcm)