K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

\(3-4x\left(25-2x\right)=8x^2+x-300.\)

\(3-100x+8x^2=8x^2+x-300\)

\(3-100x=x-300\)

\(3+300=x+100x\)

\(303=101x\)

\(x=3\)

Vậy x cần tìm bằng 3

4 tháng 3 2019

3-4x(25-2x)=8x^2 + x -300 
<=> 3-100x+8x^2=8x^2 + x -300 
<=>3-100x=x-300 
<=>101x=303 
<=>x=3 

22 tháng 9 2020

a) x3 - 9x2 + 14x = 0

<=> x( x2 - 9x + 14 ) = 0

<=> x( x2 - 2x - 7x + 14 ) = 0

<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0

<=> x( x - 2 )( x - 7 ) = 0

<=> x = 0 hoặc x = 2 hoặc x = 7

b) x3 - 5x2 + 8x - 4 = 0

<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0

<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0

<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0

<=> x( x - 2 )2 - ( x - 2 )2 = 0

<=> ( x - 2 )2( x - 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

c) x4 - 2x3 + x2 = 0

<=> x2( x2 - 2x + 1 ) = 0

<=> x2( x - 1 )2 = 0

<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

d) 2x3 + x2 - 4x - 2 = 0

<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0

<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0

<=> ( 2x + 1 )( x2 - 2 ) = 0

<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)

18 tháng 10 2018

a)\(x^3-x^2-x+1=\left(x^3-x\right)-\left(x^2-1\right)=x\left(x^2-1\right)-\left(x^2-1\right)=\left(x-1\right)^2.\left(x+1\right)\)

b)\(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)=\left(x+2\right)\left(x-2\right)\left(x+1\right)\)

c)\(a^5+27a^2=a^2\left(a^3+27\right)=a^2\left(a+3\right)\left(a^2-3a+9\right)\)

d)\(x^4-8x=x\left(x^3-8\right)=x\left(x-2\right)\left(x^2+2x+4\right)\)

e)\(x^4-4x^3+4x^2=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)

f)\(2x^4-32=2\left(x^4-16\right)=2\left(x^2+4\right)\left(x^2-4\right)=2\left(x^2+4\right)\left(x+2\right)\left(x-2\right)\)

18 tháng 10 2018

a) \(x^3-x^2-x+1\)

\(=x^2\left(x-1\right)-\left(x-1\right)\)

\(=\left(x^2-1\right)\left(x-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-1\right)=\left(x-1\right)^2\left(x+1\right)\)

b) \(x^3+x^2-4x-4\)

\(=x^2\left(x+1\right)-4\left(x+1\right)\)

\(=\left(x^2-4\right)\left(x+1\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)

c) \(a^5+27a^2=a^2\left(a^3+27\right)\)

\(=a^2\left(a+3\right)\left(a^2-3a+9\right)\)

d) \(x^4-8x=x\left(x^3-8\right)\)

\(=x\left(x-2\right)\left(x^2+2x+4\right)\)

e) \(x^4-4x^3+4x^2\)

\(=\left(x^2\right)^2-2\cdot x^2\cdot2x+\left(2x\right)^2\)

\(=\left(x^2+2x\right)^2\)\(=\left[x\left(x+2\right)\right]^2=x^2\left(x+2\right)^2\)

f) \(2x^4-32=2\left(x^4-16\right)\)

\(=2\left(x^2-4\right)\left(x^2+4\right)\)

\(=2\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)

5 tháng 10 2017

a, \(x^3-5x=0\)

\(\Rightarrow x\left(x^2-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)

b, \(4x^3-9x=0\)

\(\Rightarrow x\left(4x^2-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\4x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{\dfrac{9}{4}}\end{matrix}\right.\)

c, \(2x^3-72x=0\)

\(\Rightarrow2x\left(x^2-36\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm6\end{matrix}\right.\)

d, \(4\left(3x+1\right)^2+16=25\)

\(\Rightarrow4\left(3x+1\right)^2-9=0\)

\(\Rightarrow\left[2\left(3x+1\right)-3\right]\left[2\left(3x+1\right)+3\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}2\left(3x+1\right)-3=0\\2\left(3x+1\right)+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x+1=\dfrac{3}{2}\\3x+1=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\)

5 tháng 10 2017

a, \(x^2-5x=0\)

\(\Rightarrow x\left(x^2-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)

b, \(4x^3-9x=0\)

\(\Rightarrow x\left(4x^2-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\4x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{\dfrac{9}{4}}\end{matrix}\right.\)

c, \(2x^3-72x=0\)

\(\Rightarrow2x\left(x^2-36\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x^2-36=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

21 tháng 3 2017

thầy mình bảo phân tích cách này thành nhân tử rồi nhớ nghiệm và máy tính mà bấm chứ chắc cái này cao siêu quá chưa đến lượt bọn mình giải đâu

15 tháng 1 2020

3-4x(25-2x)= 8x2 +x -300

3 - 100x + 8x2 = 8x2 + x - 300

3 + 300 - 100x - x + 8x2 - 8x2 = 0

303 -101x = 0

101(3- x)=0

x = 3

a: \(=x^2-4x+4+y^2+2y+1\)

\(=\left(x-2\right)^2+\left(y+1\right)^2\)

b: \(=x^2+10x+25+x^2-2xy+y^2\)

\(=\left(x+5\right)^2+\left(x-y\right)^2\)

c: \(=a^2+2ab+b^2+4b^2+4b+1\)

\(=\left(a+b\right)^2+\left(2b+1\right)^2\)

d: \(=2\left(x^2+b^2\right)\)

17 tháng 7 2018

Câu a :

\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow-2x=7\)

\(\Leftrightarrow x=-\dfrac{7}{2}\)

Câu b :

\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

\(\Leftrightarrow3x^2+26x=0\)

\(\Leftrightarrow x\left(3x+26\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+26=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)

19 tháng 9 2018

a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\rightarrow x^3-2x^2+4x+2x^2-4x^2+8-x^3-2x=15\)

\(\rightarrow2x+8=15\)

\(\rightarrow2x=15-8=7\)

\(\Rightarrow x=7:2=3,5\)

Do ko có t/gian nên ko kịp lm câu b