K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2020

a)

PT <=> \(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)

<=> \(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

<=> \(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\)

\(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\ne0\)

<=> x - 2013 = 0

<=> x = 2013

KL: ...

b) PT <=> \(\left(x^4-5x^3\right)+\left(5x^3-25x^2\right)-\left(5x^2-25x\right)+\left(6x-30\right)=0\)

<=> \(x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)=0\)

<=> \(\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)

<=> \(\left(x-5\right)\left[\left(x^3+6x^2\right)-\left(x^2+6x\right)+\left(x+6\right)\right]=0\)

<=> \(\left(x-5\right)\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]=0\)

<=> \(\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)

<=> \(\left[{}\begin{matrix}x=5\\x=-6\\x=\varnothing\end{matrix}\right.\)

KL: ...

a) Ta có: \(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}-2012=0\)

\(\Leftrightarrow\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1=0\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\right)=0\)

\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1>0\)

nên x-2013=0

hay x=2013

Vậy: Tập nghiệm S={2013}

b) Ta có: \(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+6x-5x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)(1)

Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

hay \(x^2-x+1>0\forall x\)(2)

Từ (1) và (2) suy ra (x+6)(x-5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=5\end{matrix}\right.\)

Vậy: Tập nghiệm S={-6;5}

9 tháng 11 2017

Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0

=> 6x2 - 21x - (6x+ x - 90x - 15) - 2010 = 0

=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0

=> 68x - 1995 = 0

 ? 

b) 2x(x - 2012) - x + 2012 = 0

=> 2x(x - 2012) - (x - 2012) = 0

=> (x - 2012) (2x - 1) = 0

⇔[

x−2012=0
2x−1=0

⇔[

x=2012
2x=1

⇔[

x=2012
x=12 

Vậy x = {2012;12 }

Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0

=> 6x2 - 21x - (6x+ x - 90x - 15) - 2010 = 0

=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0

=> 68x - 1995 = 0

 ? 

b) 2x(x - 2012) - x + 2012 = 0

=> 2x(x - 2012) - (x - 2012) = 0

=> (x - 2012) (2x - 1) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-2012=0\\2x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2012\\2x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2012\\x=\frac{1}{2}\end{cases}}\)

Vậy x = \(\left\{2012;\frac{1}{2}\right\}\)

12 tháng 6 2018

Làm từng câu nha 

Bài 1 : 

\(a)\) Hỏi alibaba nguyễn đi :v ( đơn giản là t ko biết giải ) 

\(b)\) \(\left(4x\right)^2-9=0\)

\(\Leftrightarrow\)\(\left(4x\right)^2=9\)

\(\Leftrightarrow\)\(\left(4x\right)^2=3^2\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}4x=3\\4x=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-3}{4}\end{cases}}}\)

Vậy \(x=\frac{3}{4}\) hoặc \(x=\frac{-3}{4}\)

\(c)\) \(x^2-6x+8=0\)

\(\Leftrightarrow\)\(\left(x^2-6x+9\right)-1=0\)

\(\Leftrightarrow\)\(\left(x-3\right)^2-1=0\)

\(\Leftrightarrow\)\(\left(x-3\right)^2=1\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}}\)

Vậy \(x=2\) hoặc \(x=4\)

Chúc bạn học tốt ~ 

12 tháng 6 2018

@alibaba nguyễn cho mình hỏi bài

19 tháng 2 2020

Bài 3:

Ta có: \(\frac{x+1}{2013}+\frac{x+2}{2012}=\frac{x+3}{2011}+\frac{x+4}{2010}\)

\(\text{⇔}\frac{x+1}{2013}+1+\frac{x+2}{2012}+1=\frac{x+3}{2011}+1+\frac{x+4}{2010}+1\)

\(\text{⇔}\frac{x+2014}{2013}+\frac{x+2014}{2012}-\frac{x+2014}{2011}-\frac{x+2014}{2010}=0\)

\(\text{⇔}\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)

\(\text{⇔}x+4=0\) ( Vì \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\))

\(\text{⇔}x=-4\)

Vậy..

19 tháng 2 2020

Bài 1:

a, Hai phương trình tương đương là hai phương trình có cùng một tập nghiệm.

b, Ta có:

3x + 2 = 0 ⇔ x = \(-\frac{2}{3}\)

15x + 10 = 0 ⇔ x = \(-\frac{2}{3}\)

Vậy hai phương trình trên là hai phương trình tương đương.

Bài 2:

a, 5 - (x - 6) = 4(3 - 2x)

⇔ 5 - x + 6 = 12 - 8x

⇔ 5 - x + 6 - 12 + 8x = 0

⇔ 7x - 1 = 0

\(x=\frac{1}{7}\)

Vậy phương trình trên có nghiệm là \(x=\frac{1}{7}\)

b, 2x(x - 3) + (3 - x) = 0

⇔ (x - 3)(2x - 1) = 0

\(\left[{}\begin{matrix}x-3=0\\2x-1=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=3\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy..

a) ĐKXĐ: \(x\notin\left\{0;2\right\}\)

Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)

Suy ra: \(x^2+2x-x+2-2=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-1}

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2