Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (2x-1)(x+3)(2-x)=0
=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0
=>x=1/2 hoặc x=-3 hoặc x=2
2)x^3 + x^2 + x + 1 = 0
=>.x^2(x+1)+(x+1)=0
=>(x^2+1)(x+1)=0
=>x^2+1=0 hoặc x+1=0
=> x =-1
3) 2x(x-3)+5(x-3) =0
=>(2x+5)(x-3)=0
=>2x+5=0 hoặc x-3=0
=>x=-5/2 hoặc x=3
4)x(2x-7)-(4x-14)=0
=> (x-2)(2x-7)=0
=> x-2 =0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
5)2x^3+3x^2+2x+3=0
=>x^2(2x+3)+2x+3=0
=>(x^2+1)(2x+3)=0
=>x^2+1=0 hoặc 2x+3=0
=> x =-3/2
( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0
<=> 2x2 - x - 3 - 2x2 + 6x = 0
<=> 5x - 3 = 0
<=> 5x = 3
<=> x = 3/5
( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0
<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0
<=> 4x - 3 = 0
<=> 4x = 3
<=> x = 3/4
( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0
<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0
<=> x4 + 1 - x4 - 2x = 0
<=> 1 - 2x = 0
<=> 2x = 1
<=> x = 1/2
( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0
<=> x3 - 6x2 + 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0
<=> x3 - 6x2 + 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0
<=> 12x - 20 = 0
<=> 12x = 20
<=> x = 20/12 = 5/3
a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)
\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)
b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)
\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)
c ; d tương tự nhé !
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
Answer:
\(\left(2x-3\right).\left(x+1\right)-x.\left(2x+3\right)-9=0\)
\(\Rightarrow\left(2x^2+2x-3x-3\right)-2x^2-3x-9=0\)
\(\Rightarrow\left(2x^2-x-3\right)-2x^2-3x-9=0\)
\(\Rightarrow2x^2-x-3-2x^2-3x-9=0\)
\(\Rightarrow\left(2x^2-2x^2\right)-\left(x+3x\right)-\left(3+9\right)=0\)
\(\Rightarrow-4x-12=0\)
\(\Rightarrow x+3=0\)
\(\Rightarrow x=-3\)
\(2x.\left(x-3\right)-x+3=0\) (Sửa đề)
\(\Rightarrow2x.\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right).\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\2x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)
\(2x.\left(x^2-4\right)+6.\left(4-x^2\right)=0\)
\(\Rightarrow2x.\left(x^2-4\right)-6.\left(x^2-4\right)=0\)
\(\Rightarrow2.\left(x-3\right).\left(x+2\right).\left(x-2\right)=0\)
Trường hợp 1: \(x-3=0\Rightarrow x=3\)
Trường hợp 2: \(x+2=0\Rightarrow x=-2\)
Trường hợp 3: \(x-2=0\Rightarrow x=2\)
a. \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x^2-2x-x^3+4x^2-3x=0\)
\(\Leftrightarrow-x^3+5x^2-5x=0\)
\(\Leftrightarrow-x\left(x^2-5x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x^2-5x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2-\frac{5}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{cases}}\)
a) \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-2-x^2+4x-3\right)=0\)
\(\Leftrightarrow x\left(-x^2+5x-5\right)=0\)
\(\Leftrightarrow x\left(x-\frac{5+\sqrt{5}}{2}\right)\left(x-\frac{5-\sqrt{5}}{2}\right)=0\)
=> \(x\in\left\{0;\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)
b) \(\left(2x-5\right)\left(x+3\right)-\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x^2+x-15-2x^2-x+3=0\)
\(\Leftrightarrow-12=0\left(vn\right)\)
c) \(\left(x-2\right)\left(x^2+2x+8\right)-x^3-2x+1=0\)
\(\Leftrightarrow x^3+4x-16-x^3-2x+1=0\)
\(\Leftrightarrow2x=15\)
\(\Rightarrow x=\frac{15}{2}\)
x(2x - 3) - 2(3 - 2x) = 0
x(2x - 3) + 2(2x - 3) = 0
(2x - 3)(x + 2) = 0
\(\left[\begin{array}{nghiempt}2x-3=0\\x+2=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-2\end{array}\right.\)
2x(x - 5) - x(3 + 2x) = 26
2x2 - 10x - 3x - 2x2 = 26
- 13x = 26
x = - 26 : 13
x = - 2
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
\(2x^2=x\)
\(\Rightarrow2x^2-x=0\)
\(x\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy \(x=0\)hoặc \(x=\frac{1}{2}\)
\(x^3=x^5\)
\(\Rightarrow x^5-x^3=0\)
\(x^3.\left(x^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x=0\)hoặc \(x=1\)
\(x^2.\left(x+1\right)+2x\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^2+2x\right)=0\)
\(x.\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)hoặc \(x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)hoặc \(x=-2\)
Vậy \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\) hoặc \(x=-2\)
\(x.\left(2x-3\right)-2\left(3-2x\right)=0\)
\(x.\left(2x-3\right)+2.\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}}\)
Vậy \(x=\frac{3}{2}\)hoặc \(x=-2\)
\(2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
\(S\left\{0;\frac{1}{2}\right\}\)
\(d)x^3-x^5=0\Leftrightarrow x^3\left(1-x^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^3=0\\1-x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{1}\end{cases}}\)
\(S=\left\{0;\pm\sqrt{1}\right\}\)
các câu sau tương tự nha bn
\(a,\left(2x-1\right)^2-\left(2x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-1-2x-3\right)=0\)
\(\Leftrightarrow-4\left(2x-1\right)=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(b,\left(x+5\right)\left(x-2\right)-\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2+3x-10\right)-\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2+3x-10-x^2+9=0\)
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\frac{1}{3}\)
a) (2x - 1)2 - (2x + 3)(2x - 1) = 0
<=> (2x - 1)(2x - 1 - 2x - 3) = 0
<=> (2x - 1).(-4) = 0
<=> 2x - 1 = 0
<=> x = 1/2
Vậy x = 1/2 là nghiệm phương trình
b) Ta có (x - 5)(x - 2) - (x - 3)(x + 3) = 0
<=> x2 - 7x + 10 - x2 + 9 = 0
<=> -7x + 19 = 0
<=> -7x = - 19
<=> x = 19/7
Vây x = 19/7 là nghiệm phương trình
2x(2x+3)-2x-3=o
2x(2x+3)-(2x+3)=0
(2x+3).(2x-1)=0
=>2x+3=0 hoặc 2x-1=0
+)th1: 2x+3=0
2x=-3
x=-3/2
+)th2: 2x-1=0
2x=1
x=1/2
vậy x thuộc {-3/2 ;1/2}